[Technical Field]
[0001] The present invention relates to a laser recording method and a laser recording device.
[Background Art]
[0002] Such a conventional laser processing apparatus is known that irradiates a workpiece
with laser light to process the piece. This type of known laser processing apparatus
includes a laser irradiation device such as a laser array. The laser array has a plurality
of arrayed semiconductor lasers as laser light-emitting devices that emit laser beams
toward respective different positions in a certain direction. Laser recording apparatuses
are also known that use such a laser processing apparatus to write and record images
and others to a thermosensitive recording medium as a recording object.
[0003] Patent Literature 1 describes a method of laser processing to cut a long optical
film as a workpiece into pieces having a certain width. The method controls laser
power output and maintains the amount of energy per unit area of the laser light applied
to the optical film constant when the processing rate of the laser light to the optical
film is changed with a change in the moving speed of the optical film.
[Summary of Invention]
[Technical Problem]
[0005] In this process, all the power output of laser light, emitted from a laser light
source onto the thermosensitive recording medium as a recording object, is not always
used as energy for recording such as writing. More specifically, the laser power output
applied to the thermosensitive recording medium through irradiation is partially dissipated
to the periphery of the area irradiated with the laser, which phenomenon is called
heat diffusion, and the part of the power output is therefore not used as energy for
recording such as writing. Then, there is a problem that when performing the recording
processing to write an image or the like with laser light while moving at least the
thermosensitive recording medium as a recording object or the laser light source,
the quality of recording processing including writing to the thermosensitive recording
medium is difficult to be maintained due to the effect of the above heat diffusion,
even if the amount of energy per unit area applied to the thermosensitive recording
medium is made constant according to the relative speed between the thermosensitive
recording medium and the laser light source.
[0006] From the above viewpoint, it is an object of the present invention to maintain the
quality of recording processing including, for example, writing to a recording object.
[Solution to Problem]
[0007] The invention is defined by the claims.
[Advantageous Effects of Invention]
[0008] An embodiment of the present invention provides the advantageous effect that the
quality of recording processing including, for example, writing to a recording object
can be maintained.
[Brief Description of Drawings]
[0009]
[Fig. 1]Fig. 1 is a schematic perspective view of an image recording system according
to a first embodiment.
[Fig. 2]Fig. 2 is a schematic perspective view of a configuration of the image recording
system.
[Fig. 3]Fig. 3 is a view illustrating the geometry of a laser array.
[Fig. 4A]Fig. 4A is a diagram for explaining the relation between a control pulse
and a light pulse.
[Fig. 4B]Fig. 4B is a diagram for explaining the relation between the control pulse
and the light pulse.
[Fig. 5]Fig. 5 is a diagram for explaining printing to a thermosensitive recording
label in the rest state.
[Fig. 6]Fig. 6 is a diagram for explaining printing to a moving thermosensitive recording
label.
[Fig. 7]Fig. 7 is a block diagram that illustrates a part of an electrical circuit
of the image recording system.
[Fig. 8A]Fig. 8A is a diagram for explaining an energy control scheme in laser printing.
[Fig. 8B]Fig. 8B is a diagram for explaining the energy control scheme in laser printing.
[Fig. 8C]Fig. 8C is a diagram for explaining the energy control scheme in laser printing.
[Fig. 9]Fig. 9 is a graph that illustrates the relation between laser power output
to a thermosensitive recording label and the moving speed.
[Fig. 10]Fig. 10 is a graph that illustrates the relation between a pulse width to
a thermosensitive recording label and the moving speed.
[Fig. 1 1]Fig. 11 is a graph that illustrates the relation between the color optical
density value and the moving speed of a thermosensitive recording label.
[Fig. 12A]Fig. 12A is a diagram for explaining results of printing with no correction
provided.
[Fig. 12B]Fig. 12B is a diagram for explaining results of printing with no correction
provided.
[Fig. 12C]Fig. 12C is a diagram for explaining results of printing with no correction
provided.
[Fig. 13A]Fig. 13A is a diagram for explaining an example of energy correction processing
according to the first embodiment.
[Fig. 13B]Fig. 13B is a diagram for explaining the example of energy correction processing
according to the first embodiment.
[Fig. 13C]Fig. 13C is a diagram for explaining the example of energy correction processing
according to the first embodiment.
[Fig. 13D]Fig. 13D is a diagram for explaining the example of energy correction processing
according to the first embodiment.
[Fig. 14]Fig. 14 is a flowchart that schematically illustrates a flow of printing
processing of a controller.
[Fig. 15A]Fig. 15A is a diagram for explaining an example of energy correction processing
according to a second embodiment.
[Fig. 15B]Fig. 15B is a diagram for explaining the example of energy correction processing
according to a second embodiment.
[Fig. 15C]Fig. 15C is a diagram for explaining the example of energy correction processing
according to a second embodiment.
[Fig. 15D]Fig. 15D is a diagram for explaining the example of energy correction processing
according to a second embodiment.
[Description of Embodiments]
[0010] Exemplary embodiments of a laser recording method and a laser recording device are
described in detail below with reference to the accompanying drawings. A laser recording
device irradiates a thermosensitive recording medium as a recording object with laser
beams to provide laser processing and to record an image and others on the medium
by writing.
[0011] The above image includes any visible information, and is selectable as appropriate
depending on the purpose. Examples of the image include letters, signs, lines, figures,
solid images, a combination thereof, and a two-dimensional code such as a barcode
and a QR code (registered trademark).
[0012] The above recording object is not limited to a specific object and may be any object
on which information can be recorded with a laser, and is selectable as appropriate
depending on the purpose. The recording object includes any object capable of absorbing
light and converting the light into heat to form an image. Engraving a metal is one
of the examples. Examples of the recording object include a thermosensitive recording
medium and a structure having a thermosensitive recording part.
[0013] The thermosensitive recording medium is composed of a supporting body, an image recording
layer on the supporting body, and other layers as necessary. Such layers may be configured
as a single layer or as a multilayer structure, and may be mounted on the other surface
of the supporting body.
Image Recording Layer
[0014] The image recording layer contains a leuco dye and a color developer and other components
as necessary.
[0015] A leuco dye is not specifically limited and selectable as appropriate depending on
the purpose from dyes usually used for a thermosensitive recording material. The leuco
dye preferably uses a leuco compound for dye selected from, for example, the triphenylmethane
series, the fluoran series, the phenothiazine series, the auramine series, the spiropyran
series, and the indolinophtalide series.
[0016] The color developer is selected from various electron-accepting compounds or oxidants
that develop color of a leuco dye upon contact.
[0017] Examples of other components include binder resin, a photo-thermal conversion material,
a heat soluble material, an antioxidant, a light stabilizer, a surfactant, a glidant,
and a filler.
Supporting Body
[0018] The supporting body is not specifically limited in shape, structure, size, and the
like, and is selectable as appropriate depending on the purpose. For example, the
supporting body may have a flat-plate shape. The supporting body may be configured
as a single layer structure or a multilayer structure. The size of the supporting
body is selectable as appropriate depending on the size or the like of the thermosensitive
recording medium.
Other Layers
[0019] Examples of other layers include a photo-thermal conversion layer, a protective layer,
an under layer, an ultraviolet absorbing layer, an oxygen blocking layer, an intermediate
layer, a back layer, an adhesive layer, and a glue layer.
[0020] The thermosensitive recording medium can be formed into a desired shape depending
on the usage. The thermosensitive recording medium may be formed into, for example,
cards, tags, labels, sheets, and rolls. Examples of the card include a prepaid card,
a point card, and a credit card. The recording medium formed into a tag smaller than
cards is usable as a price tag, for example. The recording medium formed into a tag
larger than cards is usable as, for example, a process control chart, a shipping instruction,
and a ticket. Since a recording medium formed into a label is adhesive and can be
formed into various sizes, the medium is usable for process management, product management,
and the like by being attached to a repeatedly used cart, a case, a box, a container,
or the like. Moreover, since a recording medium formed into a sheet larger than cards
has a wider space for recording images, the medium is usable for general documents,
instructions for process management, and other purposes.
[0021] Examples of the thermosensitive recording part of the structure include a portion,
of a surface of the structure, where a label-type thermosensitive recording medium
is attached and a portion, of a surface of the structure, where a thermosensitive
recording material is applied. The structure having a thermosensitive recording part
is not specifically limited as long as it has such a thermosensitive recording part
formed on its surface, and is selectable as appropriate depending on the purpose.
Examples of the structure having the thermosensitive recording part include various
products such as a plastic bag, a PET bottle, and a can, a container for transfer
such as a cardboard and a cart, a partially finished product, and an industrial product.
[0022] An example structure having a thermosensitive recording part as a recording object
will be described. Specifically, a laser recording device to record images on a long
thermosensitive recording label, as a recording object, will now be described.
First Embodiment
[0023] Fig. 1 is a schematic perspective view of an image recording system 100 as a laser
recording device according to a first embodiment. In the following description, the
direction of conveyance (move) of a thermosensitive recording label RL will be indicated
as the X-axis direction, the vertical direction will be indicated as the Z-axis direction,
and a direction intersecting with both the direction of travel and the vertical direction
will be indicated as the Y-axis direction.
[0024] As described below, the image recording system 100 irradiates the thermosensitive
recording label RL as a recording object with laser beams to process the surface and
to record images on the object.
[0025] As illustrated in Fig. 1, the image recording system 100 includes conveying devices
10, a recording unit 20, a body 30, an optical fiber 42, and an encoder 60.
[0026] The recording unit 20 processes the surface of a recording object and records visual
images on the recording object by irradiating the object with laser beams. The recording
unit 20 corresponds to a laser irradiation device. The recording unit 20 is disposed
on the side of -Y with respect to the conveying device 10, in other words, on the
side of -Y to the conveyor path.
[0027] The conveying device 10 conveys the thermosensitive recording label RL using, for
example, a plurality of revolution rollers.
[0028] The body 30 is connected with the conveying devices 10, the recording unit 20, and
others, and integrally controls the image recording system 100.
[0029] The encoder 60 acquires the moving speed of the thermosensitive recording label RL.
[0030] The thermosensitive recording label RL will now be described. The thermosensitive
recording label RL develops color by thermal energy applied by the laser.
[0031] The thermosensitive recording label RL as a thermosensitive recording medium records
images with its color tone changed by heat. The thermosensitive recording medium,
as the thermosensitive recording label RL, in this embodiment is a single-time image
recording medium. The thermosensitive recording medium can be replaced by a thermoreversible
recording medium capable of repeatedly recording images.
[0032] The thermosensitive recording medium used as the thermosensitive recording label
RL of this embodiment is made of a material (photo-thermal conversion material) to
absorb laser light and convert the light into heat and a material having the hue,
the reflectance, or the like changing by heat.
[0033] The photo-thermal conversion material is broadly classed into inorganic materials
and organic materials. Examples of the inorganic material include particles of at
least one of carbon black, metal borides and metal oxides such as Ge, Bi, In, Te,
Se and Cr. Of the above inorganic materials, metal borides and metal oxides are more
preferable because they absorb a larger amount of light in the range of the near infrared
wavelengths and absorb a smaller amount of light in the range of visible light wavelengths.
The inorganic material preferably includes at least one type selected from, for example,
hexaboride, a tungsten oxide compound, antimony tin oxide (ATO), indium tin oxide
(ITO), and zinc antimonate.
[0034] Examples of hexaboride include LaB6, CeB6, PrB6, NdB6, GdB6, TbB6, DyB6, HoB6, YB6,
SmB6, EuB6, ErB6, TmB6, YbB6, LuB6, SrB6, CaB6, and (La, Ce)B6.
[0035] Examples of a tungsten oxide compound include fine particles of tungsten oxide represented
by the general formula: WyOz, (where W is tungsten, O is oxygen, 2.2 ≦ z/y ≦ 2.999)
and fine particles of a complex tungsten oxide compound represented by the general
formula: MxWyOz, (where M is one or more elements selected from H, He, alkali metals,
alkaline earth metals, rare-earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni,
Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br,
Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, 0.001
≦ x/y ≦ 1, 2.2 ≦ z/y ≦ 3.0) as described in Literature of International Publication
No. 2005/037932 and
Japanese Unexamined Patent Publication No. 2005-187323.
[0036] Of the above tungsten oxide compounds, cesium-doped tungsten oxide is more preferable
in the point that the compound absorbs a larger amount of light in the range of the
near infrared and absorbs a smaller amount of light in the range of visible light.
[0037] Furthermore, as a tungsten oxide compound, of antimony tin oxide (ATO), indium tin
oxide (ITO), and zinc antimonate, ITO is more preferable in the point that the compound
absorbs a larger amount of light in the range of near infrared wavelengths and absorbs
a smaller amount of light in the range of visible light wavelengths. These compounds
are layered by using vacuum vapor deposition or by bonding particulate materials to
one another with resin or the like.
[0038] The organic materials can use various types of dye as appropriate depending on the
spectrum wavelength to be absorbed. When a semiconductor laser is used for a light
source, such a near-infrared absorbing dye is used that has an absorption peak approximately
from 600 nm to 1,200 nm. Examples of the organic material include cyanine dyes, quinone
dyes, quinoline derivatives of indonaphthol, phenylenediamine nickel complexes, and
phthalocyanine dyes.
[0039] The photo-thermal conversion material may use a single material or may use a combination
of materials. The photo-thermal conversion material may be included in the image recording
layer or in any site other than the image recording layer. When the photo-thermal
conversion material is used in a site other than the image recording layer, a photo-thermal
conversion layer is preferably disposed next to a thermoreversible recording medium.
The photo-thermal conversion layer is made of at least a photo-thermal conversion
material and binder resin.
[0040] As a material having the hue, the reflectance, or the like changing by heat, a known
material may be used such as a combination of an electron-donating dye precursor and
an electron-accepting color developer, used for conventional thermosensitive paper.
Examples of a material having the hue, the reflectance, or the like changing by heat
further include such a material that is subjected to a complex reaction of heat and
light, for example, a reaction of color change associated with solid phase polymerization,
caused by a diacetylene compound heated and irradiated with ultraviolet light.
[0041] Fig. 2 is a schematic perspective view of a configuration of the image recording
system 100.
[0042] The image recording system 100 includes a laser processing device 40 serving as a
laser light source. The laser processing device 40 includes a laser irradiation device
14 including a laser array unit 14a and a fiber array unit 14b, and an optical unit
43. In this embodiment, the laser irradiation device 14 uses a fiber array recording
device. The fiber array recording device provides surface processing and records images
using a fiber array where a plurality of laser discharge portions of optical fibers
are arrayed along a main scanning direction (the Z-axis direction) intersecting with
a sub-scanning direction (the X-axis direction), which is a moving direction of the
thermosensitive recording label RL as a recording object. The laser processing device
40 irradiates the thermosensitive recording label RL with laser beams emitted from
laser light-emitting devices 41 through fiber arrays and records an image (visible
image) depicted based on a drawing unit.
[0043] The laser array unit 14a includes a plurality of arrayed laser light-emitting devices
41, a cooling unit 50 to cool the laser light-emitting devices 41, a plurality of
actuation drivers 45 for respective laser light-emitting devices 41 to actuate the
corresponding laser light-emitting devices 41, and a controller 46 to control the
actuation drivers 45. The controller 46 is connected with a power source 48 to supply
power to the laser light-emitting devices 41 and an image information output unit
47 such as a personal computer to output image information.
[0044] The laser light-emitting device 41 is selectable as appropriate depending on the
purpose, and may be selected from, for example, a semiconductor laser, a solid-state
laser, and a dye laser. Of these lasers, a semiconductor laser is more preferable
for the laser light-emitting device 41 in that the semiconductor laser enables selection
from a wide range of wavelengths and is small enough to allow a reduction in size
and cost of the device.
[0045] The wavelength of laser light emitted from the laser light-emitting device 41 is
not specifically limited and selectable as appropriate depending on the purpose. In
particular, the wavelength in the range of 700 nm to 2000 nm is preferable, and the
range of 780 nm to 1600 nm is more preferable.
[0046] Not all the energy applied to the laser light-emitting device 41, serving as light-emitting
means, is converted into laser light. A part of the energy, which is not converted
into laser light, is converted into heat, and the laser light-emitting device 41 therefore
produces heat. The laser light-emitting device 41 is cooled by a cooling unit 50 as
cooling means. Furthermore, use of the fiber array unit 14b for the laser irradiation
device 14 of this embodiment allows the laser light-emitting devices 41 to be disposed
remote from one another. This allows a laser light-emitting device 41 to be less affected
by heat of the next laser light-emitting device 41, which thus allows efficient cooling
of the laser light-emitting device 41 and therefore allows avoiding an increase and
variation in the temperature of the laser light-emitting devices 41, reducing variation
in the power output of laser light, and suppressing the density unevenness and void.
Power output of laser light is average power output measured by a power meter. A method
of controlling power output of laser light is classed into two groups. One of the
groups controls peak power, and the other controls luminous efficacy of a pulse (the
duty ratio: laser luminous time / total period).
[0047] The cooling unit 50 uses liquid cooling that circulates coolant to cool the laser
light-emitting devices 41. The cooling unit 50 includes a heat-receiving unit 51 where
the coolant receives heat from the laser light-emitting devices 41, and a heat-dissipation
unit 52 to dissipate heat of the coolant. The heat-receiving unit 51 and the heat-dissipation
unit 52 are connected with each other by cooling pipes 53a and 53b. The heat-receiving
unit 51 includes a case and a cooling tube for the coolant to flow therethrough, both
of which being made of a material with high thermal conductivity, and the cooling
tube is accommodated in the case. A plurality of laser light-emitting devices 41 are
arrayed on the heat-receiving unit 51.
[0048] The heat-dissipation unit 52 includes a radiator and a pump to circulate the coolant.
The coolant pumped by the pump of the heat-dissipation unit 52 travels the cooling
pipe 53a and flows into the heat-receiving unit 51. The coolant traveling the cooling
tube inside the heat-receiving unit 51 draws heat from the laser light-emitting devices
41 arrayed on the heat-receiving unit 51 and cools the laser light-emitting devices
41. The coolant having the temperature increased by drawing heat of the laser light-emitting
devices 41 through the heat-receiving unit 51 travels the cooling pipe 53b to the
radiator of the heat-dissipation unit 52 and is cooled by the radiator. The coolant
is cooled by the radiator and is pumped again to the heat-receiving unit 51.
[0049] The fiber array unit 14b includes a plurality of optical fibers 42 prepared for respective
laser light-emitting devices 41 and an array head 44 holding the optical fibers 42
at near the laser discharge portions 42a. Specifically, the optical fibers 42 are
arrayed in the vertical direction (the Z-axis direction) and held by the array head
44. A laser incident portion of each optical fiber 42 is attached to a laser discharge
surface of the corresponding laser light-emitting device 41.
[0050] If all the optical fibers 42 are designed to be held by one array head 44, the array
head 44 needs to be sufficiently long and is therefore easily deformed. In this case,
use of one array head 44 has difficulty in maintaining straight arrangement of beams
and in keeping the beam pitch constant. The array head 44 is therefore designed to
hold one hundred to two hundred optical fibers 42. The laser irradiation device 14
preferably has a plurality of array heads 44, each of which holds one hundred to two
hundred optical fibers 42, arrayed in the Z-axis direction intersecting with the moving
direction of the thermosensitive recording label RL. In this embodiment, two hundred
array heads 44 are arranged in the Z-axis direction.
[0051] Fig. 3 is a view illustrating the geometry of a laser array. As illustrated in Fig.
3, the optical fibers 42 are arranged on the array head 44 such that the diameters
of dots R1, formed by irradiating the thermosensitive recording medium RL with laser
beams to develop color, are continuous with one another at a focal point where light
is collected by the optical unit 43.
[0052] The direction of scanning of laser light includes a main scanning direction and a
sub-scanning direction, and the main scanning direction and the sub-scanning direction
intersect with each other. The main scanning direction is a direction in which a plurality
of optical fibers 42 are arrayed. The sub-scanning direction is a direction in which
the thermosensitive recording label RL moves.
[0053] An image is recorded on the thermosensitive recording label RL while moving the array
head 44 and the thermosensitive recording label RL relative to each other, and thus
the array head 44 may be moved relative to the thermosensitive recording label RL,
or the thermosensitive recording label RL may be moved relative to the array head
44. In the case where the array head 44 is moved relative to the thermosensitive recording
label RL, the expression "the moving speed of the thermosensitive recording label
RL" can be used when regarding the array head 44 as an observation point.
[0054] As illustrated in Fig. 2, the optical unit 43 as an example of optical series includes
a collimator lens 43a for converting divergent beams of laser light discharged from
the optical fibers 42 into parallel beams and a condenser lens 43b for condensing
laser light to the surface of the thermosensitive recording label RL to be irradiated
with laser light. Necessity of disposing the above optical unit 43 may be determined
based on the purpose.
[0055] The image information output unit 47 such as a personal computer inputs image information
to the controller 46. The controller 46 creates a drive signal (control pulse) to
drive actuation drivers 45 based on the input image information. The controller 46
transmits the created drive signal (control pulse) to the actuation drivers 45. More
specifically, the controller 46 includes a clock generator and transmits a drive signal
(control pulse) to drive the actuation driver 45 to each of the actuation drivers
45 when the number of clock signals produced by the clock generator reaches a predetermined
number.
[0056] Upon receipt of the drive signal (control pulse), the actuation driver 45 transmits
a current pulse and actuates the corresponding laser light-emitting device 41. In
response to drive of the actuation driver 45, the laser light-emitting device 41 outputs
a light pulse and emits laser light. The laser light emitted from the laser light-emitting
device 41 enters the corresponding optical fiber 42 and is output from a laser discharge
portion 42a of the optical fiber 42. The laser light output from the laser discharge
portion 42a of the optical fiber 42 permeates through the collimator lens 43a and
the condenser lens 43b of the optical unit 43 and is applied to the surface of the
thermosensitive recording label RL as a recording object. The laser light applied
to the surface of the thermosensitive recording label RL heats the surface thereof,
which allows images to be recorded on the surface of the thermosensitive recording
label RL.
[0057] Figs. 4A and 4B are diagrams for explaining the relation between a control pulse
and a light pulse. Fig. 4A is a timing diagram of the control pulse and the light
pulse. Fig. 4B illustrates an I-L characteristic of a laser. As illustrated in Figs.
4A and 4B, the rise of the light pulse is a little delayed from that of the current
pulse. This delay is caused because the laser emits no light before current at a certain
level is applied, as seen from the I-L characteristic indicating correlation between
laser output and a current value.
[0058] In use of a recording device that records images on a recording object by using galvano
mirrors and polarizing laser light, an image such as a letter is recorded by applying
laser light to the object, in a manner of drawing a continuous line with each galvano
mirror rotated. Therefore, there is a restriction that, when a certain amount of information
is recorded on a recording object, the recording object being conveyed needs to be
stopped in order to make the recording work.
[0059] The laser irradiation device 14 using a laser array where a plurality of laser light-emitting
devices 41 are arrayed can record images on the thermosensitive recording label RL
by switching on and off the laser light-emitting devices for respective pixels. This
allows an image having a larger amount of information to be recorded on the thermosensitive
recording label RL without stopping conveyance of the thermosensitive recording label
RL. The laser irradiation device 14 is therefore capable of recording an image having
a large amount of information on a recording object without reducing manufacturing
productivity.
[0060] Since the laser irradiation device 14 irradiates the thermosensitive recording label
RL with laser light and heats the thermosensitive recording label RL to record images
thereon, the laser irradiation device 14 needs to include laser light-emitting devices
41 capable of outputting high power to a certain extent. The laser light-emitting
device 41 therefore produces a large amount of heat. A conventional laser array recording
device having no fiber array units 14b therefore needs to array the laser light-emitting
devices 41 at intervals determined based on the resolution. Such a conventional laser
array recording device therefore needs to array the laser light-emitting devices 41
at quite small pitches to obtain resolution of 200 dpi. The geometry of the conventional
laser array recording device makes heat of the laser light-emitting device 41 less
dissipated, which increases the temperature of the laser light-emitting device 41.
With the conventional laser array recording device, an increase in the temperature
of the laser light-emitting device 41 changes the wavelength and optical power output
of the laser light-emitting device 41. The conventional laser array recording device
therefore has difficulty in heating the recording object to a predetermined temperature
and thus cannot obtain a satisfactory quality image. In addition, in the conventional
laser array recording device, to suppress an increase in the temperature of the laser
light-emitting device 41 as described above, the moving speed of the recording object
should be reduced and a certain light emission interval of laser light-emitting device
41 should be secured, which prevents increase of manufacturing productivity.
[0061] A chiller system is usually used for the cooling unit 50. In this embodiment, the
cooling unit 50 does not provide heating but only provide cooling. The temperature
of the light source does not exceed a set temperature of the chiller, however, the
temperatures of the cooling unit 50 and the laser light-emitting device 41 contacting
the cooling unit fluctuate with the ambient temperature. In use of a semiconductor
laser for the laser light-emitting device 41, laser power output is changed with a
change in the temperature of the laser light-emitting device 41 (in other words, laser
power output is increased with a reduction in the temperature of the laser light-emitting
device 41). For normal image formation, laser power output is therefore preferably
controlled by measuring the temperature of the laser light-emitting device 41 or the
temperature of the cooling unit 50 and controlling an input signal to the actuation
driver 45, which provides control to maintain laser power output constant, based on
the measured temperature.
[0062] The laser irradiation device 14 is a fiber array recording device with the fiber
array unit 14b. By using the fiber array recording device, it becomes enough to arrange
the laser discharge portions 42a of the fiber array unit 14b at appropriate pitches
based on the image resolution, and there is therefore no necessity of adjusting the
pitches between the laser light-emitting devices 41 of the laser array unit 14a to
pitches based on the resolution. Therefore, according to the laser irradiation device
14, heat of the laser light-emitting devices 41 can be sufficiently dissipated, and
thus pitches between the laser light-emitting devices 41 can be made adequately wide.
Then, according to the laser irradiation device 14, it is possible to prevent the
temperature of the laser light-emitting devices 41 from reaching high and reduce fluctuation
in the wavelength and optical power output of the laser light-emitting devices 41.
The laser irradiation device 14 is therefore capable of recording satisfactory quality
image on the thermosensitive recording label RL. Further, according to the laser light-emitting
devices 41, an increase in the temperature of the laser light-emitting devices 41
can be suppressed even if light emission interval is reduced, which enables increasing
the moving speed of the thermosensitive recording label RL, and improving manufacturing
productivity.
[0063] The laser irradiation device 14 includes the cooling unit 50 and cools the laser
light-emitting devices 41 with a liquid, and thus, an increase in the temperature
of the laser light-emitting devices 41 can be further suppressed. As a result, according
to the laser irradiation device 14, light emission interval of the laser light-emitting
devices 41 can be further reduced, which enables increasing the moving speed of the
thermosensitive recording label RL, and accordingly improving manufacturing productivity.
The laser irradiation device 14 cools the laser light-emitting devices 41 with a liquid,
but the laser light-emitting devices 41 may be cooled with air using a cooling fan
or the like. Compared to air cooling, liquid cooling is advantageous in efficient
cooling and is capable of smoothly cooling the laser light-emitting device 41. Air
cooling is less efficient than liquid cooling; however, it is advantageous in cooling
the laser light-emitting device 41 at a lower cost.
[0064] The process of printing on the thermosensitive recording label RL in the rest state
will now be described.
[0065] Fig. 5 is a diagram for explaining printing on the thermosensitive recording label
RL in the rest state. While the thermosensitive recording label RL is in the rest
state, the laser light-emitting device 41 continuously irradiates a laser spot with
laser light. The laser light emitted from the laser light-emitting device 41 is transmitted
to the thermosensitive recording label RL as thermal energy. As illustrated in Fig.
5, the thermal energy has Gaussian distribution that has a peak at the center and
has low ends.
[0066] As illustrated in Fig. 5, the thermosensitive recording label RL has a color development
threshold. In the graph, the area above the color development threshold develops color.
The color optical density is proportional to the magnitude of thermal energy. The
color development threshold differs between materials of the thermosensitive recording
label RL.
[0067] The process of printing on a moving thermosensitive recording label RL will now be
described.
[0068] Fig. 6 is a diagram for explaining printing on a moving thermosensitive recording
label RL. When laser light is emitted from the laser light-emitting device 41 onto
the moving thermosensitive recording label RL, the spot irradiated with laser light
accordingly moves. In Fig. 6, the thermosensitive recording label RL is conveyed with
laser power output maintained constant and with thermal energy, applied to the thermosensitive
recording label RL per unit diameter of an irradiated spot, maintained constant. As
illustrated in Fig. 6, even when the color development threshold is not exceeded with
a single spot, thermal energy is accumulated at a part where spots overlap if the
spots overlap so that the color development threshold is exceeded and color is developed.
[0069] Electrical connection of the image recording system 100 will now be described.
[0070] Fig. 7 is a block diagram illustrating a part of an electrical circuit of the image
recording system 100. As illustrated in Fig. 7, the controller 46 includes a central
processing unit (CPU), a random access memory (RAM), a read only memory (ROM) to store
a computer program or the like, and a non-volatile memory to store a computer program
or the like. For example, the controller 46 controls drive of the devices of the image
recording system 100 and performs various types of arithmetic processing. The controller
46 is connected with the conveying devices 10, the laser processing device 40, the
encoder 60, an operation panel 181, the image information output unit 47, and other
units.
[0071] The operation panel 181 has a touchscreen display and various types of keys, and
displays images and receives various types of information input through key operation
of an operator.
[0072] As illustrated in Fig. 7, the controller 46 functions as laser power output control
means 461, laser power output correction means 462, and speed detection means 463
with the CPU operating in accordance with computer programs stored in the ROM and
the non-volatile memory.
[0073] The speed detection means 463 detects the moving speed of the thermosensitive recording
label RL with the location of the laser irradiation device 14 when laser light is
emitted from the laser light source, as an observation point, while moving at least
one of the thermosensitive recording label RL as a recording object and the laser
irradiation device 14 as a laser light source.
[0074] The laser power output control means 461 changes the power output of laser light
emitted from the laser irradiation device 14 based on the moving speed of the thermosensitive
recording label RL as a recording object and maintains the amount of energy per unit
area applied to the thermosensitive recording label RL constant.
[0075] Even when the amount of energy per unit area applied to the thermosensitive recording
label RL is maintained constant, the level of thermal diffusion (energy loss) affecting
the power output of laser light applied to the thermosensitive recording label RL
varies depending on the moving speed, which results in variation in the color optical
density of the thermosensitive recording label RL. The laser power output correction
means 462 therefore corrects the power output of laser light emitted from the laser
irradiation device 14 based on the moving speed of the thermosensitive recording label
RL to compensate such variation in the color optical density.
[0076] A computer program executed by the image recording system 100 of this embodiment
is stored in a computer-readable memory medium such as a compact disc read only memory
(CD-ROM), a flexible disk (FD), a compact disc recordable (CD-R), and a digital versatile
disc (DVD) as an installable or executable file and is provided.
[0077] The computer program executed by the image recording system 100 of this embodiment
may be stored in a computer connected to a network such as the Internet and provided
by being downloaded via the network. The computer program executed by the image recording
system 100 of this embodiment may be provided or distributed via a network such as
the Internet.
[0078] The computer program executed by the image recording system 100 of this embodiment
may be embedded in a ROM or the like and provided.
[0079] An energy control scheme for laser printing will now be described.
[0080] Figs. 8A to 8C are diagrams for explaining an energy control scheme for laser printing.
The six graphs illustrated in Figs. 8A to 8C are based on the same amount of energy.
An energy control scheme for laser printing is classed into a laser power output control
scheme (a first control scheme) illustrated in Fig. 8B and a pulse width modulation
(PWM) control scheme (a second control scheme) illustrated in Fig. 8C.
[0081] The laser power output control scheme will now be described.
[0082] As illustrated in Fig. 8A and Fig. 8B, the laser power output control scheme synchronizes
the pulse width t [s], indicating the time for actual printing, to the period T [s]
to print one dot and makes the duty ratio (t/T) of the pulse width t [s] to the period
T [s] of laser power output constant. In printing one dot of a certain size by the
laser power output control scheme, an increase in the moving speed v [m/s] reduces
the period T, whereas a decrease in the moving speed v increases the period T. In
the laser power output control scheme, a change in the moving speed v changes the
period T, which accordingly changes the pulse width t.
[0083] In the laser power output control scheme, energy per unit area E1 [J] is given by:
E1 = L / (v · d), where L is laser power output L [w], and d is the diameter of a
beam d [m]. The laser power output therefore varies.
[0084] Since the laser power output is correlated with a current value with the I-L characteristic,
the laser power output control scheme changes the current value to change the laser
power output.
[0085] As illustrated in Fig. 8A and Fig. 8C, the PWM control scheme fixes the energy E1
per unit area by making the laser power output L and the pulse width t constant, regardless
of the period T [s] to print one dot. In the PWM control scheme, a change in the moving
speed changes the period T, which accordingly changes the duty ratio (t/T). In other
words, the PWM control scheme maintains the laser power output L [w] and the pulse
width t [s] constant, while allowing the duty ratio (t/T) of the pulse width t [s]
to the period T [s] of laser power output to vary.
[0086] The following describes the relation between the laser power output and the color
optical density on the thermosensitive recording label RL.
[0087] On the thermosensitive recording label RL, the color optical density is proportional
to the magnitude of thermal energy, in other words, proportional to the laser power
output for writing. For maintaining consistency in the quality of recording such as
writing, it is necessary to maintain the power output of laser light, emitted from
the laser light-emitting device 41, constant per unit area of recording on the thermosensitive
recording label RL. In this case, the area of recording corresponds to one dot as
a smallest unit of recording.
[0088] Fig. 9 is a graph that illustrates the relation between laser power output to the
thermosensitive recording label RL and the moving speed. Fig. 10 is a graph that illustrates
the relation between a pulse width to the thermosensitive recording label RL and the
moving speed. Fig. 11 is a graph that illustrates the relation between the color optical
density value and the moving speed of the thermosensitive recording label RL.
[0089] As described above, the energy per unit area E1 [J] applied to the thermosensitive
recording label RL is given by: E1 = L / (v · d) ... (1), where L is the laser power
output L [w], v is the moving speed v [m/s] of the thermosensitive recording label
RL , and d is the diameter d [m] of a beam.
[0090] As indicated by L1 of Fig. 9, the laser power output control scheme is capable of
fixing the energy E1 per unit area applied to the thermosensitive recording label
RL by linearly varying the laser power output with the moving speed of the thermosensitive
recording label RL. As indicated by P1 of Fig. 10, the PWM control scheme is capable
of fixing the energy E1 per unit area applied to the thermosensitive recording label
RL by maintaining the laser power output and the pulse width constant.
[0091] Such manners that only fix the energy E1 per unit area, however, problematically
cause subtle difference in color optical density as illustrated in Fig. 11, because
the level of thermal diffusion affecting the energy applied to the thermosensitive
recording label RL varies with the moving speed of the thermosensitive recording label
RL. This will be more specifically described.
[0092] Basically, not all the power output of laser light emitted from a laser light source
onto a thermosensitive recording medium as a recording object is always used for recording
processing such as writing. A part of the power output of laser light applied to the
thermosensitive recording medium through irradiation is dissipated to the periphery
of the irradiated area, which phenomenon is called thermal diffusion, and the dissipated
power is not used as energy for recording processing such as writing. The thermal
diffusion is accounted as a value that stays unchanged for a change in the moving
speed v [m/s] of the thermosensitive recording label RL.
[0093] As indicated by the above formula (1), where the energy per unit area applied to
the thermosensitive recording label RL is represented by E1 [J], the laser power output
by L [w], the moving speed of the thermosensitive recording label RL by v [m/s], and
the diameter of a beam by d [m], an increase in the moving speed v [m/s] of the thermosensitive
recording label RL increases the laser power output L [w], which allows the energy
E1 [J] per unit area applied to the thermosensitive recording label RL to be constant.
[0094] With regard to the effect of thermal diffusion to the laser power output L [w], a
decrease in the moving speed v [m/s] of the thermosensitive recording label RL decreases
the laser power output L [w], and an increase in the speed increases the laser power
output L [w]. The laser power output L [w] is therefore subjected to a higher level
of thermal diffusion in the low moving speed area than in the high moving speed area
of the thermosensitive recording label RL. In other words, variation in the color
optical density derived from thermal diffusion (energy loss due to thermal diffusion
to the laser power output L [w]) is more significant in the low moving speed area
of the thermosensitive recording label RL.
[0095] Considering the above effect of thermal diffusion to the laser power output L [w],
simply linearly changing the laser power output, with a change in the moving speed
of the thermosensitive recording label RL, is not a sufficiently effective measure.
[0096] In this embodiment, the laser power output is corrected based on the moving speed
of the thermosensitive recording label RL to prevent variation in the color optical
density, the variation resulting from thermal diffusion on the thermosensitive recording
label RL.
[0097] Figs. 12A to 12C illustrate results of printing with no correction provided. Fig.
12A illustrates first to third solid areas on the thermosensitive recording label
RL, the density of which is, respectively, thin (192 of 256 gradations), middle (102
of 256 gradations), and completely thick (64 of 256 gradations). Fig. 12B illustrates
the relation between the moving speed and the color optical density in each of the
laser power output control scheme and the PWM control scheme. In Fig. 12B, the reference
moving speed of the thermosensitive recording label RL is set at 2.0 m/s. It is an
object of this embodiment to make the color optical density value (an OD value) of
a solid area in each moving speed close to the color optical density value of the
same in the reference moving speed.
[0098] Because the purpose is to make the color optical density value (an OD value) similar
at any moving speed to improve the production yield, the reference moving speed is
set almost in the middle between the lowest speed and the highest speed. This enables
suppressing variation between the reference moving speed and the lowest moving speed
and between the reference moving speed and the highest moving speed as much as possible.
[0099] Fig. 12C illustrates conditions when damage occurs. As illustrated in Fig. 12C, in
the high moving speed area with no correction provided (L1), the laser power output
control scheme can maintain the density desirable, however, unlike the conditions
with correction provided (L2 and L3), the scheme suffers from damage to the thermosensitive
recording label RL. Since the laser power output L [w] is less affected by thermal
diffusion (the energy loss is small) in the high moving speed area, larger power is
intensively applied to a spot. The protective layer is therefore likely to get damaged
by heat and to be removed. The correction is therefore necessary also to solve this
problem.
[0100] Exemplary energy correction processing will now be described.
[0101] Figs. 13A to 13D are diagrams for explaining an example of energy correction processing
according to the first embodiment. The exemplary energy correction of this embodiment
is applied to both the laser power output control scheme and the PWM control scheme
using the following formulae.
The laser power output control scheme ... L = L0 + β1 ((v0 - v) / v0)
The PWM control scheme ... P = P0 + β2 ((v0 - v) / v0)
v0 [m/s]: the reference moving speed
v [m/s]: a moving speed
L0 [W]: the laser power output value at the reference moving speed v0 [m/s]
P0 [µs]: the pulse width at the reference moving speed v0 [m/s]
L [W]: the laser power output value at a moving speed v [m/s]
P [µs]: the pulse width at a moving speed v [m/s]
β1, β2: a coefficient of correction
[0102] Fig. 13 A is a table that illustrates the relation between the moving speed and the
color optical density in each of the laser power output control scheme and the PWM
control scheme with correction provided. Fig. 13B is a graph that illustrates the
relation between the laser power output to the thermosensitive recording label RL
and the moving speed with correction provided and with no correction provided. Fig.
13C is a graph that illustrates the relation between the pulse width to the thermosensitive
recording label RL and the moving speed with correction provided and with no correction
provided.
[0103] Fig. 13A gives resulting color optical density values (OD values) of solid areas
(see Fig. 12A) with correction provided. The coefficients β
1 and β
2 differ depending on materials of the thermosensitive recording label RL. In the graph
of Fig. 13A, the laser power output and the pulse width are calculated using β
1 = 0.3, and β
2 = 1.0 × 10
-6.
[0104] In the laser power output control scheme subjected to the above correction, the relation
between the corrected laser power output to the thermosensitive recording label RL
and the moving speed is given as L2 in Fig. 13B. In the PWM control scheme subjected
to the above correction, the relation between the corrected pulse width to the thermosensitive
recording label RL and the moving speed is given as P2 in Fig. 13C.
[0105] Since it is an object to improve the production yield by maintaining the color optical
density value (an OD value) substantially constant at a variable speed, the reference
moving speed v
0 [m/s] is set at around the middle of the lowest speed and the highest speed. This
achieves as small variation in the color optical density between the reference moving
speed and the lowest moving speed as possible, and likewise, achieves as small variation
in the color optical density between the reference moving speed and the highest moving
speed as possible.
[0106] The tables of Fig. 13D illustrate variation in the color optical density value (OD
value) with respect to the color optical density at the reference moving speed, in
the laser power output control scheme and the PWM control scheme. More specifically,
the data is indicated for the cases with correction provided and with no correction
provided for each of the solid areas (see Fig. 12A). The values on the table of Fig.
13D are given by comparing the color optical density value at the reference moving
speed (2.0 m/s) with the color optical density value at each of the predetermined
moving speeds (0.3 m/s and 5.0 m/s), and of the optical density values at the predetermined
moving speeds (0.3 m/s and 5.0 m/s), selecting either one having a larger variation.
[0107] As illustrated in Fig. 13D, the largest variation in the color optical density value
(OD value) with no correction provided is 24% in the laser power output control scheme
and 12% in the PWM control scheme. By contrast, it can be seen that the largest variation
in the color optical density value (OD value) with correction (first correction) provided
is reduced to 10% in the laser power output control scheme and to 6.0% in the PWM
control scheme.
[0108] As described above, the effect of thermal diffusion (energy loss) to the power output
of laser light, emitted onto the thermosensitive recording label RL, varies with the
moving speed, which results in variation in the color optical density of the thermosensitive
recording label RL. The following describes printing processing including processing
to correct such variation in the color optical density.
[0109] Fig. 14 is a flowchart that schematically illustrates a flow of printing processing
of the controller 46. As illustrated in Fig. 14, the controller 46 selects the reference
moving speed and, based on the speed, sets the most suitable amount of energy (Step
S1). In Step S1 to set the most suitable amount of energy, the controller 46 fixes
energy E1 per unit area, to be applied to the thermosensitive recording label RL,
by multiplying the energy by a suitable coefficient of energy correction.
[0110] The controller 46 instructs to start a printing operation (Step S2).
[0111] Right before the start of printing, the controller 46 acquires moving speed data
(information of speed) of the thermosensitive recording label RL from the encoder
60 (Step S3).
[0112] Based on the moving speed data (information of speed) acquired at Step S3, the controller
46 performs energy correction processing to change the amount of energy (Step S4).
[0113] The controller 46 starts printing by turning on a printing trigger (Step S5). The
printing trigger starts soon after being turned on.
[0114] The controller 46 starts printing at the amount of energy set at Step S4 (Step S6).
[0115] Upon completion of printing operation for printing data of ongoing printing (Step
S7), the controller 46 determines the presence or absence of data to be subsequently
printed (Step S8).
[0116] In the presence of data to be subsequently printed (Yes at Step S8), the controller
46 returns the process back to Step S3 and acquires the moving speed data (information
of speed) of the thermosensitive recording label RL from the encoder 60.
[0117] In the absence of data to be subsequently printed (No at Step S8), the controller
46 ends the operation.
Second Embodiment
[0118] A second embodiment will now be described.
[0119] The image recording system 100 of the second embodiment differs from that of the
first embodiment in the manner of energy correction processing. The manner described
in the first embodiment still has large variation left in the color optical density
value (OD value) in both the low speed area and the high speed area. The following
description of the second embodiment will omit the same part as the first embodiment
and focus on the parts different from the first embodiment.
[0120] Figs. 15A to 15D are diagrams for explaining an example of energy correction processing
according to the second embodiment. The exemplary energy correction of this embodiment
is applied to both the laser power output control scheme and the PWM control scheme
using the following formulae.
The laser power output control scheme ... L = L0 × (v / v0)α1
The PWM control scheme ... P = P0 × (v0 / v)α2
v0 [m/s]: the reference moving speed
v [m/s]: a moving speed
L0 [W]: the laser power output value at the reference moving speed v0 [m/s]
P0 [µs]: the pulse width at the reference moving speed v0 [m/s]
L [W]: the laser power output value at a moving speed v [m/s]
P [µs]: the pulse width at a moving speed v [m/s]
α1, α2: a coefficient of correction
[0121] Fig. 15A is a table that illustrates the relation between the moving speed and the
color optical density in each of the laser power output control scheme and the PWM
control scheme with correction provided. Fig. 15B is a graph that illustrates the
relation between the laser power output to the thermosensitive recording label RL
and the color optical density with correction provided and with no correction provided.
Fig. 15C is a graph that illustrates the relation between the pulse width to the thermosensitive
recording label RL and the color optical density with correction provided and with
no correction provided.
[0122] Fig. 15A illustrates resulting optical density values (OD values) of solid areas
(see Fig. 12A) with correction provided. The coefficients α
1 and α
2 differ depending on materials of the thermosensitive recording label RL. In the table
of Fig. 15A, the laser power output and the pulse width are calculated using α
1 = 0.88 and α
2 = 0.01.
[0123] In the laser power output control scheme subjected to the above correction, the relation
between the corrected laser power output to the thermosensitive recording label RL
and the moving speed is given as L3 in Fig. 15B. In the PWM control scheme subjected
to the above correction, the relation between the corrected pulse width to the thermosensitive
recording label RL and the moving speed is given as P3 in Fig. 15C.
[0124] The tables of Fig. 15D illustrate variation in the color optical density value (OD
value) with respect to the color optical density at the reference moving speed, in
the laser power output control scheme and the PWM control scheme. More specifically,
the data is indicated for the cases with correction provided and with no correction
provided for each of the solid areas (see Fig. 12A). The values on the tables of Fig.
15D are given by comparing the color optical density value at the reference moving
speed (2.0 m/s) with the color optical density value at each of the predetermined
moving speeds (0.3 m/s and 5.0 m/s), and of the optical density values at the predetermined
moving speeds (0.3 m/s and 5.0 m/s), selecting either one having a larger variation.
[0125] As illustrated in Fig. 15D, the largest variation in the color optical density value
(OD value) with no correction provided is 24% in the laser power output control scheme
and 12% in the PWM control scheme, whereas the largest variation in the color optical
density value (OD value) with correction (second correction) provided is effectively
reduced to 2.0% in the laser power output control scheme and to 2.0% in the PWM control
scheme.
[0126] In comparison with the results of Fig. 13D of the first embodiment, the variation
in the color optical density value (OD value) with correction provided are effectively
reduced as illustrated in Fig. 15D.
[0127] The laser power output is set to maintain the amount of energy per unit area, applied
to a recording object, constant for a change in the relative speed between the recording
object and a laser light source. According to the first and the second embodiments,
energy loss derived from thermal diffusion, occurring on the recording object and
affecting the laser power output, is compensated based on the relative speed. The
moving speed of the recording object increases from a low speed, in start of moving,
to a high speed, in steady operation, and decreases from the high speed in the steady
operation to the low speed to stop moving. According to the embodiments, consistency
in the quality of recording including writing to the recording object is maintained
by reducing the effect of such variation in the moving speed of the recording object.
Reference Signs List
[0128]
40 Laser light source
100 Laser recording device
461 Laser power output control means
462 Laser power output correction means
RL Recording object
Citation List
Patent Literature
1. A laser recording method for processing a recording object (RL) with laser light emitted
from a laser light source (40), the laser recording method comprising:
detecting a moving speed of the recording object (RL) with a location of the laser
light source (40) when the laser light source (40) emits laser light, as an observation
point, while moving at least one of the recording object (RL) and the laser light
source (40); and
correcting power output of the laser light set such that an amount of energy applied
by the laser light per unit area of the recording object (RL) is constant even if
the moving speed is changed, while moving at least one of the recording object (RL)
and the laser light source (40), to compensate energy loss derived from thermal diffusion
occurring on the recording object (RL) based on the moving speed detected at the detecting.
2. The laser recording method according to claim 1,
Wherein, in a case of a first control scheme that maintains a duty ratio (t/T) of
a pulse width t [s] to a laser power output period T [s] constant, the power output
of the laser light is corrected at the correcting, using the following formula:
where
v0 [m/s]: a reference moving speed,
v [m/s]: a moving speed,
L0 [W]: a laser power output value at the reference moving speed v0 [m/s],
L [W]: a laser power output value at the moving speed v [m/s], and
β1: a coefficient of correction.
3. The laser recording method according to claim 1, wherein, in a case of a second control
scheme that maintains laser power output L[w] and a pulse width t [s] constant and
allows a duty ratio (t/T) of a pulse width t [s] to a laser power output period T
[s] to vary, the power output of the laser light is corrected at the correcting, using
the following formula:
where
v0 [m/s]: a reference moving speed,
v [m/s]: a moving speed,
P0 [us]: a pulse width at the reference moving speed v0 [m/s],
P [us]: a pulse width at the moving speed v [m/s], and
β2: a coefficient of correction.
4. The laser recording method according to claim 1, wherein, in a case of a first control
scheme that maintains a duty ratio (t/T) of a pulse width t [s] to a laser power output
period T [s] constant, the power output of the laser light is corrected at the correcting,
using the following formula:
where
v0 [m/s]: a reference moving speed,
v [m/s]: a moving speed,
L0 [W]: a laser power output value at the reference moving speed v0 [m/s],
L [W]: a laser power output value at the moving speed v [m/s], and
α1: a coefficient of correction.
5. The laser recording method according to claim 1, wherein, in a case of a second control
scheme that maintains laser power output L [w] and a pulse width t [s] constant and
allows a duty ratio (t/T) of a pulse width t [s] to a laser power output period T
[s] to vary, the power output of the laser light is corrected at the correcting, using
the following formula:
where
v0 [m/s]: a reference moving speed,
v [m/s]: a moving speed,
P0 [us]: a pulse width at the reference moving speed v0 [m/s],
P [us]: a pulse width at the moving speed v [m/s], and
α2: a coefficient of correction.
6. The laser recording method according to any one of claims 2 to 5, wherein at the correcting,
a reference moving speed is set in a middle between a lowest speed and a highest speed.
7. A laser recording device configured to process a recording object (RL) with laser
light emitted from a laser light source (40), the laser recording device comprising:
a speed detector (60) configured to detect a moving speed of the recording object
(RL) with a location of the laser light source (40) when the laser light source (40)
emits laser light, as an observation point, while moving at least one of the recording
object (RL) and the laser light source (40); and
a laser power output corrector (462) configured to correct power output of the laser
light set such that an amount of energy applied by the laser light per unit area of
the recording object (RL) is constant even if the moving speed is changed, while moving
at least one of the recording object (RL) and the laser light source (40), to compensate
energy loss derived from thermal diffusion occurring on the recording object based
on the moving speed detected by the speed detector.
8. The laser recording device according to claim 7, wherein, in a case of a first control
scheme that maintains a duty ratio (t/T) of a pulse width t [s] to a laser power output
period T [s] constant, the laser power output corrector (462) is configured to correct
the power output of the laser light using the following formula:
where
v0 [m/s]: a reference moving speed,
v [m/s]: a moving speed,
L0 [W]: a laser power output value at the reference moving speed v0 [m/s],
L [W]: a laser power output value at the moving speed v [m/s], and
β1: a coefficient of correction.
9. The laser recording device according to claim 7, wherein, in a case of a second control
scheme that maintains laser power output L[w] and a pulse width t [s] constant and
allows a duty ratio (t/T) of a pulse width t [s] to a laser power output period T
[s] to vary, the laser power output corrector (462) is configured to correct the power
output of the laser light using the following formula:
where
v0 [m/s]: a reference moving speed,
v [m/s]: a moving speed,
P0 [us]: a pulse width at the reference moving speed v0 [m/s],
P [us]: a pulse width at the moving speed v [m/s], and
β2: a coefficient of correction.
10. The laser recording device according to claim 7, wherein, in a case of a first control
scheme that maintains a duty ratio (t/T) of a pulse width t [s] to a laser power output
period T [s] constant, the laser power output corrector (462) is configured to correct
the power output of the laser light using the following formula:
where
v0 [m/s]: a reference moving speed,
v [m/s]: a moving speed,
L0 [W]: a laser power output value at the reference moving speed v0 [m/s],
L [W]: a laser power output value at the moving speed v [m/s], and
α1: a coefficient of correction.
11. The laser recording device according to claim 7, wherein, in a case of a second control
scheme that maintains laser power output L[w] and a pulse width t [s] constant and
allows a duty ratio (t/T) of a pulse width t [s] to a laser power output period T
[s] to vary, the laser power output corrector (462) is configured to correct the power
output of the laser light using the following formula:
where
v0 [m/s]: a reference moving speed,
v [m/s]: a moving speed,
P0 [us]: a pulse width at the reference moving speed v0 [m/s],
P [us]: a pulse width at the moving speed v [m/s], and α2: a coefficient of correction.
12. The laser recording device according to any one of claims 8 to 11, wherein the laser
power output corrector (462) is configured to set a reference moving speed in a middle
between a lowest speed and a highest speed.
1. Laseraufzeichnungsverfahren zum Bearbeiten eines Aufzeichnungsobjekts (RL) mit von
einer Laserlichtquelle (40) emittiertem Laserlicht, wobei das Laseraufzeichnungsverfahren
umfasst:
Erkennen einer Bewegungsgeschwindigkeit des Aufzeichnungsobjekts (RL) mit einem Ort
der Laserlichtquelle (40), wenn die Laserlichtquelle (40) Laserlicht emittiert, als
einen Beobachtungspunkt, während wenigstens eines/eine des Aufzeichnungsobjekts (RL)
und der Laserlichtquelle (40) bewegt wird; und
Korrigieren der Leistungsausgabe des Laserlichtsatzes, sodass eine Energiemenge, die
durch das Laserlicht pro Flächeneinheit des Aufzeichnungsobjekts (RL) aufgebracht
wird, konstant ist, selbst wenn die Bewegungsgeschwindigkeit geändert wird, während
wenigstens eines/eine des Aufzeichnungsobjekts (RL) und der Laserlichtquelle (40)
bewegt wird, um den Energieverlust zu kompensieren, der von der thermischen Diffusion
abgeleitet wird, die auf dem Aufzeichnungsobjekt (RL) auftritt, auf Grundlage der
Bewegungsgeschwindigkeit, die bei dem Erkennen erkannt wird.
2. Laseraufzeichnungsverfahren nach Anspruch 1,
wobei in einem Fall eines ersten Steuerschemas, das ein Tastverhältnis (t/T) einer
Impulsbreite t [s] zu einer Laserenergieausgabeperiode T [s] konstant hält, die Leistungsausgabe
des Laserlichts bei dem Korrigieren unter Verwendung der folgenden Formel korrigiert
wird:
wobei
V0 [m/s]: eine Referenzbewegungsgeschwindigkeit,
v [m/s]: eine Bewegungsgeschwindigkeit,
L0 [W]: ein Laserleistungsausgabewert bei der Referenzbewegungsgeschwindigkeit v0 [m/s],
L [W]: ein Laserleistungsausgabewert bei der Bewegungsgeschwindigkeit v [m/s], und
β1: ein Korrekturkoeffizient.
3. Laseraufzeichnungsverfahren nach Anspruch 1, wobei in einem Fall eines zweiten Steuerschemas,
das die Laserleistungsausgabe L[w] und eine Impulsbreite t [s] konstant hält und ermöglicht,
dass ein Tastverhältnis (t/T) einer Impulsbreite t [s] zu einer Laserleistungsausgabeperiode
T [s] variiert, die Leistungsausgabe des Laserlichts bei dem Korrigieren unter Verwendung
der folgenden Formel korrigiert wird:
wobei
v0 [m/s]: eine Referenzbewegungsgeschwindigkeit,
v [m/s]: eine Bewegungsgeschwindigkeit,
P0 [µs]: eine Impulsbreite bei der Referenzbewegungsgeschwindigkeit v0 [m/s],
P [µs]: eine Impulsbreite bei der Bewegungsgeschwindigkeit v [m/s], und
β2: ein Korrekturkoeffizient.
4. Laseraufzeichnungsverfahren nach Anspruch 1, wobei in einem Fall eines ersten Steuerschemas,
das ein Tastverhältnis (t/T) einer Impulsbreite t [s] zu einer Laserenergieausgabeperiode
T [s] konstant hält, die Leistungsausgabe des Laserlichts bei dem Korrigieren unter
Verwendung der folgenden Formel korrigiert wird:
wobei
v0 [m/s]: eine Referenzgeschwindigkeit,
v [m/s] eine Bewegungsgeschwindigkeit,
L0 [W]: ein Laserleistungsausgabewert bei der Referenzbewegungsgeschwindigkeit v0 [m/s],
L [W]: ein Laserleistungsausgabewert bei der Bewegungsgeschwindigkeit v [m/s], und
α1: ein Korrekturkoeffizient.
5. Laseraufzeichnungsverfahren nach Anspruch 1, wobei in einem Fall eines zweiten Steuerschemas,
das die Laserleistungsausgabe L[w] und eine Impulsbreite t [s] konstant hält und ermöglicht,
dass ein Tastverhältnis (t/T) einer Impulsbreite t [s] zu einer Laserleistungsausgabeperiode
T [s] variiert, die Leistungsausgabe des Laserlichts bei dem Korrigieren unter Verwendung
der folgenden Formel korrigiert wird:
wobei
v0 [m/s]: eine Referenzbewegungsgeschwindigkeit,
v [m/s]: eine Bewegungsgeschwindigkeit,
P0 [µs]: eine Impulsbreite bei der Referenzbewegungsgeschwindigkeit v0 [m/s],
P [µs]: eine Impulsbreite bei der Bewegungsgeschwindigkeit v [m/s], und
α2: ein Korrekturkoeffizient.
6. Laseraufzeichnungsverfahren nach einem der Ansprüche 2 bis 5, wobei bei dem Korrigieren
eine Referenzbewegungsgeschwindigkeit in einer Mitte zwischen einer niedrigsten Geschwindigkeit
und einer höchsten Geschwindigkeit eingestellt wird.
7. Laseraufzeichnungsvorrichtung, die dazu konfiguriert ist, ein Aufzeichnungsobjekt
(RL) mit von einer Laserlichtquelle (40) emittiertem Laserlicht zu bearbeiten, wobei
die Laseraufzeichnungsvorrichtung umfasst:
einen Geschwindigkeitsdetektor (60), der dazu konfiguriert ist, eine Bewegungsgeschwindigkeit
des Aufzeichnungsobjekts (RL) mit einem Ort der Laserlichtquelle (40), wenn die Laserlichtquelle
(40) Laserlicht emittiert, als einen Beobachtungspunkt zu erkennen, während wenigstens
eines/eine des Aufzeichnungsobjekts (RL) und der Laserlichtquelle (40) bewegt wird;
und
einen Laserleistungsausgabekorrektor (462), der dazu konfiguriert ist, die Leistungsausgabe
des Laserlichtsatzes auf Grundlage der Bewegungsgeschwindigkeit, die durch den Geschwindigkeitsdetektor
erkannt wird, zu korrigieren, sodass eine Energiemenge, die durch das Laserlicht pro
Flächeneinheit des Aufzeichnungsobjekts (RL) aufgebracht wird, konstant ist, selbst
wenn die Bewegungsgeschwindigkeit geändert wird, während wenigstens eines/eine des
Aufzeichnungsobjekts (RL) und der Laserlichtquelle (40) bewegt wird, um den Energieverlust
zu kompensieren, der von der thermischen Diffusion abgeleitet wird, die auf dem Aufzeichnungsobjekt
(RL) auftritt.
8. Laseraufzeichnungsvorrichtung nach Anspruch 7,
wobei in einem Fall eines ersten Steuerschemas, das ein Tastverhältnis (t/T) einer
Impulsbreite t [s] zu einer Laserenergieausgabeperiode T [s] konstant hält, der Laserleistungsausgabekorrektor
(462) dazu konfiguriert ist, die Leistungsausgabe des Laserlichts unter Verwendung
der folgenden Formel zu korngieren:
wobei
v0 [m/s]: eine Referenzbewegungsgeschwindigkeit,
v [m/s]: eine Bewegungsgeschwindigkeit,
L0 [W]: ein Laserleistungsausgabewert bei der Referenzbewegungsgeschwindigkeit v0 [m/s],
L [W]: ein Laserleistungsausgabewert bei der Bewegungsgeschwindigkeit v [m/s], und
β1: ein Korrekturkoeffizient.
9. Laseraufzeichnungsvorrichtung nach Anspruch 7, wobei in einem Fall eines zweiten Steuerschemas,
das die Laserleistungsausgabe L[w] und eine Impulsbreite t [s] konstant hält und ermöglicht,
dass ein Tastverhältnis (t/T) einer Impulsbreite t [s] zu einer Laserleistungsausgabeperiode
T [s] variiert, der Leistungsausgabekorrektor (462) dazu konfiguriert ist, die Leistungsausgabe
des Laserlichts unter Verwendung der folgenden Formel zu korngieren:
wobei
v0 [m/s]: eine Referenzbewegungsgeschwindigkeit,
v [m/s]: eine Bewegungsgeschwindigkeit,
P0 [µs]: eine Impulsbreite bei der Referenzbewegungsgeschwindigkeit v0 [m/s],
P [µs]: eine Impulsbreite bei der Bewegungsgeschwindigkeit v [m/s], und
β2: ein Korrekturkoeffizient.
10. Laseraufzeichnungsvorrichtung nach Anspruch 7, wobei in einem Fall eines ersten Steuerschemas,
das ein Tastverhältnis (t/T) einer Impulsbreite t [s] zu einer Laserenergieausgabeperiode
T [s] konstant hält, der Leistungsausgabekorrektor (462) dazu konfiguriert ist, die
Leistungsausgabe des Laserlichts unter Verwendung der folgenden Formel zu korngieren:
wobei
v0 [m/s]: eine Referenzgeschwindigkeit,
v [m/s] eine Bewegungsgeschwindigkeit,
L0 [W]: ein Laserleistungsausgabewert bei der Referenzbewegungsgeschwindigkeit v0 [m/s],
L [W]: ein Laserleistungsausgabewert bei der Bewegungsgeschwindigkeit v [m/s], und
α1: ein Korrekturkoeffizient.
11. Laseraufzeichnungsvorrichtung nach Anspruch 7, wobei in einem Fall eines zweiten Steuerschemas,
das die Laserleistungsausgabe L[w] und eine Impulsbreite t [s] konstant hält und ermöglicht,
dass ein Tastverhältnis (t/T) einer Impulsbreite t [s] zu einer Laserleistungsausgabeperiode
T [s] variiert, der Leistungsausgabekorrektor (462) dazu konfiguriert ist, die Leistungsausgabe
des Laserlichts unter Verwendung der folgenden Formel zu korngieren:
wobei
v0 [m/s]: eine Referenzbewegungsgeschwindigkeit,
v [m/s]: eine Bewegungsgeschwindigkeit,
P0 [µs]: eine Impulsbreite bei der Referenzbewegungsgeschwindigkeit v0 [m/s],
P [µs]: eine Impulsbreite bei der Bewegungsgeschwindigkeit v [m/s], und
α2: ein Korrekturkoeffizient.
12. Laseraufzeichnungsvorrichtung nach einem der Ansprüche 8 bis 11, wobei der Laserleistungsausgabekorrektor
(462) dazu konfiguriert ist, eine Referenzbewegungsgeschwindigkeit in einer Mitte
zwischen einer niedrigsten Geschwindigkeit und einer höchsten Geschwindigkeit einzustellen.
1. Procédé d'enregistrement laser pour traiter un objet d'enregistrement (RL) avec une
lumière laser émise à partir d'une source de lumière laser (40), le procédé d'enregistrement
laser comprenant :
la détection d'une vitesse de déplacement de l'objet d'enregistrement (RL) avec un
emplacement de la source de lumière laser (40) lorsque la source de lumière laser
(40) émet une lumière laser,
en tant que point d'observation, tout en déplaçant au moins l'un parmi l'objet d'enregistrement
(RL) et la source de lumière laser (40) ; et
la correction de la puissance de sortie de la lumière laser réglée de sorte qu'une
quantité d'énergie appliquée par la lumière laser par unité de surface de l'objet
d'enregistrement (RL) soit constante même si la vitesse de déplacement est modifiée,
tout en déplaçant au moins l'un parmi l'objet d'enregistrement (RL) et la source de
lumière laser (40), pour compenser la perte d'énergie dérivée de la diffusion thermique
se produisant sur l'objet d'enregistrement (RL) sur la base de la vitesse de déplacement
détectée lors de la détection.
2. Procédé d'enregistrement laser selon la revendication 1,
dans lequel, dans le cas d'un premier schéma de commande qui maintient un rapport
cyclique (t / T) d'une largeur d'impulsion t [s] par rapport à une période de puissance
de sortie du laser T [s] constante, la puissance de sortie de la lumière laser est
corrigée à l'étape de correction, en utilisant la formule suivante :
dans laquelle
v0 [m/s] : une vitesse de déplacement de référence,
v [m/s] : une vitesse de déplacement,
L0 [W] : une valeur de puissance de sortie du laser à la vitesse de déplacement de référence
v0 [m/s],
L [W] : une valeur de puissance de sortie du laser à la vitesse de déplacement v [m/s],
et
β1 : un coefficient de correction.
3. Procédé d'enregistrement laser selon la revendication 1,
dans lequel, dans le cas d'un deuxième schéma de commande qui maintient la puissance
de sortie laser L [w] et une largeur d'impulsion t [s] constantes et permet un rapport
cyclique (t / T) d'une largeur d'impulsion t [s] par rapport à une période de puissance
de sortie du laser T [s] pour varier, la puissance de sortie de la lumière laser est
corrigée lors de la correction, en utilisant la formule suivante :
ous ici
v0 [m/s] : une vitesse de déplacement de référence,
v [m/s] : une vitesse de déplacement,
P0 [µs] : une largeur d'impulsion à la vitesse de déplacement de référence v0 [m/s],
P [µs] : une largeur d'impulsion à la vitesse de déplacement v [m/s], et
β2 : un coefficient de correction.
4. Procédé d'enregistrement laser selon la revendication 1, dans lequel, dans le cas
d'un premier schéma de commande qui maintient constant un rapport cyclique (t/T) d'une
largeur d'impulsion t [s] par rapport à une période de puissance de sortie du laser
T [s], la puissance de sortie de la lumière laser est corrigée lors de la correction,
en utilisant la formule suivante :
où
v0 [m/s] : une vitesse de déplacement de référence,
v [m/s] : une vitesse de déplacement,
L0 [W] : une valeur de puissance de sortie du laser à la vitesse de déplacement de référence
v0 [m/s],
L [W] : une valeur de puissance de sortie du laser à la vitesse de déplacement v [m/s],
et
α1 : un coefficient de correction.
5. Procédé d'enregistrement laser selon la revendication 1, dans lequel, dans le cas
d'un deuxième schéma de commande qui maintient la puissance de sortie laser L [w]
et une largeur d'impulsion t [s] constantes et permet à un rapport cyclique (t/T)
d'une impulsion largeur t [s] par rapport à une période de puissance de sortie du
laser T [s] à varier, la puissance de sortie de la lumière laser est corrigée lors
de la correction, en utilisant la formule suivante :
où
v0 [m/s] : une vitesse de déplacement de référence,
v [m/s] : une vitesse de déplacement,
P0 [µs] : une largeur d'impulsion à la vitesse de déplacement de référence v0 [m/s],
P [µs] : une largeur d'impulsion à la vitesse de déplacement v [m/s], et
α2 : un coefficient de correction.
6. Procédé d'enregistrement laser selon l'une quelconque des revendications 2 à 5, dans
lequel lors de la correction, une vitesse de déplacement de référence est établie
à mi-chemin entre une vitesse la plus basse et une vitesse la plus élevée.
7. Dispositif d'enregistrement laser configuré pour traiter un objet d'enregistrement
(RL) avec une lumière laser émise à partir d'une source de lumière laser (40), le
dispositif d'enregistrement laser comprenant :
un détecteur de vitesse (60) configuré pour détecter une vitesse de déplacement de
l'objet d'enregistrement (RL) avec un emplacement de la source de lumière laser (40)
lorsque la source de lumière laser (40) émet une lumière laser, en tant que point
d'observation, tout en se déplaçant à au moins l'un parmi l'objet d'enregistrement
(RL) et la source de lumière laser (40) ; et
un correcteur de puissance de sortie du laser (462) configuré pour corriger la puissance
de sortie de la lumière laser réglée de sorte qu'une quantité d'énergie appliquée
par la lumière laser par unité de surface de l'objet d'enregistrement (RL) soit constante
même si la vitesse de déplacement est modifiée, tout en déplaçant au moins l'un parmi
l'objet d'enregistrement (RL) et la source de lumière laser (40), pour compenser la
perte d'énergie dérivée de la diffusion thermique se produisant sur l'objet d'enregistrement
sur la base de la vitesse de déplacement détectée par le détecteur de vitesse.
8. Dispositif d'enregistrement laser selon la revendication 7, dans lequel, dans le cas
d'un premier schéma de commande qui maintient un rapport cyclique (t / T) d'une largeur
d'impulsion t [s] par rapport à une période de puissance de sortie du laser T [s]
constant, le correcteur de puissance de sortie du laser (462) est configuré pour corriger
la puissance de sortie de la lumière laser en utilisant la formule suivante :
où
v0 [m/s] : une vitesse de déplacement de référence,
v [m/s] : une vitesse de déplacement,
L0 [W] : une valeur de puissance de sortie du laser à la vitesse de déplacement de référence
v0 [m/s],
L [W] : une valeur de puissance de sortie du laser à la vitesse de déplacement v [m/s],
et
β1 : un coefficient de correction.
9. Dispositif d'enregistrement laser selon la revendication 7, dans lequel, dans le cas
d'un deuxième schéma de commande qui maintient la puissance de sortie laser L [w]
et une largeur d'impulsion t [s] constantes et permet à un rapport cyclique (t / T)
d'une largeur d'impulsion t [s] par rapport à une période de puissance de sortie du
laser T [s] à varier, le correcteur de puissance de sortie du laser (462) est configuré
pour corriger la puissance de sortie de la lumière laser en utilisant la formule suivante
:
où
v0 [m/s] : une vitesse de déplacement de référence,
v [m/s] : une vitesse de déplacement,
P0 [µs] : une largeur d'impulsion à la vitesse de déplacement de référence v0 [m/s],
P [µs] : une largeur d'impulsion à la vitesse de déplacement v [m/s], et
β2 : un coefficient de correction.
10. Dispositif d'enregistrement laser selon la revendication 7, dans lequel, dans le cas
d'un premier schéma de commande qui maintient un rapport cyclique (t / T) d'une largeur
d'impulsion t [s] par rapport à une période de puissance de sortie du laser T [s]
constant, le correcteur de puissance de sortie du laser (462) est configuré pour corriger
la puissance de sortie de la lumière laser en utilisant la formule suivante :
où
v0 [m/s] : une vitesse de déplacement de référence,
v [m/s] : une vitesse de déplacement,
L0 [W] : une valeur de puissance de sortie du laser à la vitesse de déplacement de référence
v0 [m/s],
L [W] : une valeur de puissance de sortie du laser à la vitesse de déplacement v [m/s],
et
α1 : un coefficient de correction.
11. Dispositif d'enregistrement laser selon la revendication 7, dans lequel, dans le cas
d'un deuxième schéma de commande qui maintient la puissance de sortie laser L [w]
et une largeur d'impulsion t [s] constantes et permet à un rapport cyclique (t/T)
d'une impulsion largeur t [s] par rapport à une période de puissance de sortie du
laser T [s] à varier, le correcteur de puissance de sortie du laser (462) est configuré
pour corriger la puissance de sortie de la lumière laser en utilisant la formule suivante
:
où
v0 [m/s] : une vitesse de déplacement de référence,
v [m/s] : une vitesse de déplacement,
P0 [µs] : une largeur d'impulsion à la vitesse de déplacement de référence V0 [m/s],
P [µs] : une largeur d'impulsion à la vitesse de déplacement v [m/s], et
α2 : un coefficient de correction.
12. Dispositif d'enregistrement laser selon l'une quelconque des revendications 8 à 11,
dans lequel le correcteur de puissance de sortie du laser (462) est configuré pour
établir une vitesse de déplacement de référence à mi-chemin entre une vitesse la plus
basse et une vitesse la plus élevée.