(19)
(11) EP 2 916 075 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
11.10.2023 Bulletin 2023/41

(21) Application number: 14157773.4

(22) Date of filing: 05.03.2014
(51) International Patent Classification (IPC): 
F23K 5/10(2006.01)
(52) Cooperative Patent Classification (CPC):
F23K 5/10; F23G 2201/70; F23G 2209/102; F23K 2201/503; C10L 3/003; C10G 2300/302

(54)

Method and system for supplying a fuel into a combustion chamber

Verfahren und System zur Kraftstoffversorgung einer Brennkammer

Procédé et système pour fournir un carburant dans une chambre de combustion


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
09.09.2015 Bulletin 2015/37

(73) Proprietor: General Electric Technology GmbH
5400 Baden (CH)

(72) Inventors:
  • Stallmann, Olaf
    55270 Essenheim (DE)
  • Gerber, Siegfried Werner
    65817 Eppstein (DE)

(74) Representative: Novagraaf Group 
Chemin de l'Echo 3
1213 Onex / Geneva
1213 Onex / Geneva (CH)


(56) References cited: : 
EP-A1- 0 506 069
EP-A2- 1 736 652
WO-A2-2007/063388
EP-A2- 0 807 458
WO-A1-2012/159189
DE-A1-102010 026 792
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to a method and system for supplying a fuel into a combustion chamber. The combustion chamber is for example the combustion chamber of a boiler or furnace for industrial applications. The combustion chamber can be an oxy fuel combustion chamber, i.e. a combustion chamber that is supplied with a fuel and substantially pure oxygen, this is anyhow not needed and the combustion chamber can be supplied with a fuel and air. In addition, the combustion chamber can also be supplied with recirculated flue gas, but this is also not mandatory.

    [0002] The fuel is a high viscosity fluid, i.e. a fluid that alone is not able to pass through the ducts and injectors of the combustion chamber, but needs appropriate helps for this. For example the fuel is heavy residue.

    BACKGROUND



    [0003] Crude oil undergoes a number of treatments in order to separate different products from it, such as for example, liquefied petroleum gas, gasoline, diesel oil, kerosene, etc.; the remaining of these treatments is the so called heavy residue, that is a high viscosity product that at atmospheric conditions becomes solid.

    [0004] Traditionally, heavy residue is used in boilers as a fuel, for example in power plants.

    [0005] In order to get a product that can be handled, such as for example injected and atomized through injectors into the combustion chamber of a boiler, the heavy residue is heated and mixed with kerosene and/or water in order to obtain a low viscosity fluid.

    [0006] This known solution has some disadvantages.

    [0007] Heavy residue must be heated up to a temperature very close to its coking temperature. At the coking temperature, the heavy residue forms solid coke deposits that accumulate in piping and injectors, blocking them. The coking temperature for the heavy residue can begin already at temperatures as low as 200-250°C depending on the originating crude feedstock. When the heavy residue is heated up close to the coking temperature, there is the risk that some fractions of the heavy residue start to coke due to an uneven mixture of the heavy residue.

    [0008] In addition, the known solution requires the use of highly expensive fuel, such as kerosene, or high expensive fluid, such as water (in some countries water can be more expensive than oil).

    [0009] Methods and systems according to the prior art for supplying fuel into a combustion chamber are described by EP506069A and WO2012/159189A.

    SUMMARY



    [0010] An aspect of the invention includes providing a method and system that avoid heating of the heavy residue or require a heating up to a temperature well far apart from the coking temperature, such that coking is prevented.

    [0011] Another aspect of the invention includes providing a method and system that avoid or at least limit the use of expensive fuel (such as kerosene) or fluid (such as water) together with the heavy residue.

    [0012] These and further aspects are attained by providing a method and a system in accordance with the accompanying claims.

    [0013] The described solution addresses heavy residue being fuels that have a viscosity of more than 150 cSt at a temperature of 100°C.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0014] Further characteristics and advantages will be more apparent from the description of a preferred but non-exclusive embodiment of the method and system, illustrated by way of non-limiting example in the accompanying drawings, in which:

    Figure 1 shows an example of the system in a first embodiment;

    Figure 2 shows an example of the system in a second embodiment;

    Figure 3 shows an example of the system in a third embodiment;

    Figure 4 shows an example of the system in a fourth embodiment;

    Figure 5 shows an example of injection, and

    Figure 6 shows a nozzle.


    DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS



    [0015] In the following the system for supplying a fuel such as heavy residue (i.e. a fuel having a viscosity equal to or greater than 150 centipoise at a temperature of 100°C) into a combustion chamber 1 is described first.

    [0016] The combustion chamber is a part of a boiler for a power plant or an industrial furnace.

    [0017] The combustion chamber 1 combusts a fuel and generates flue gas 2 that is supplied to a flue gas treatment system 3.

    [0018] The flue gas treatment system 3 can be of any kind and, for example, it can include a compressor 5, a mercury removal unit 6 and a drier 7. Heat exchangers 8, 9 are preferably provided upstream of the mercury removal unit 6 and drier 7.

    [0019] From the drier 7 the flue gas is supplied into a separation unit 10, where the CO2 is separated from other gas. The CO2 is thus supplied to a compressor 12a-c (for example a multi stage, intercooled compressor) where it is compressed up to or above the supercritical pressure, and then to a pump 13 (but this pump is not needed and it is used according to the design) to be further compressed for storage at 14.

    [0020] The separation unit 10 can be of any type, for example figure 2 shows a scheme in which the separation unit includes two stages 15a, 15b of condensation by cooling. In this example CO2 that condenses 16a, 16b at each condensation stage 15a, 15b is also used as cooling medium. Likewise, gas 17 being the flue gas deprived of CO2 is expanded and used as cooling medium at the condensation stages 15a, 15b; the gas 17 is then vented.

    [0021] Between the compressor 12a-c and the pump 13 or storage 14 a heat exchanger 18 can be provided (it is not mandatory and is provided according to the specific design). The heat exchanger 18 is used for cooling the CO2 compressed at the compressor 12a-c.

    [0022] The system 1 comprises a fuel supply 20, a supercritical pressure CO2 supply 22, a mixing system 24 for forming a mixture of fuel and supercritical pressure CO2, injectors 26 connected to the mixing system 24 for injecting the mixture into the combustion chamber 1.

    [0023] The mixing system can be defined by the converging pipes through which supercritical pressure CO2 and fuel pass through, or by a dedicated mixer or tank.

    [0024] The combustion chamber has a pressure lower than the CO2 critical pressure.

    [0025] In addition, the system has at least a heat exchanger for heating the mixture.

    [0026] The heat exchangers can include:
    • the heat exchangers 27a, 27b that allow heating of the supercritical pressure CO2 before it is mixed with the fuel; in different embodiments both the heat exchangers 27a and 27b can be provided, or only one of them can be provided, or none of them can be provided;
    • the heat exchanger 28 that allows heating of the fuel before it is mixed with the supercritical pressure CO2; in different examples it can be provided or not.


    [0027] According to the invention as defined by the claims, the heat exchangers include the heat exchanger 29 that allows heating of the mixture of fuel and supercritical pressure CO2.

    [0028] Naturally, all or none of the heat exchangers 27a, 27b, 28 can be provided, in addition any combination of heat exchangers 27a, 27b, 28, 29 comprising the heat exchanger 29 is possible.

    [0029] The supercritical pressure CO2 can be supplied from the line that forwards the CO2 to the storage 14, from a position upstream the pump 13 or downstream the pump 13. For example the supercritical pressure CO2 supply 22 can depart from a position between the compressor 12a-c and the heat exchanger 18 (figures 1 and 2) and/or from a position between heat exchanger 18 and the pump 13 and/or from a position between the pump 13 and the storage 14 (figure 14) .

    [0030] The operation of the system is apparent from that described and illustrated and is substantially the following.

    [0031] At the combustion chamber 1 flue gas 2 is generated from the combustion of the fuel. The flue gas is compressed at the compressor 5 and then the flue gas undergoes cooling at the heat exchanger 8, mercury removal at the mercury removal unit 6, cooling at the heat exchanger 9, water removal at the drier 7. Thus the flue gas is supplied into the separation unit 10 where CO2 is separated from the other gas 17 (such as nitrogen, argon, etc.). The gas 17 is vented into the atmosphere and the CO2 (that is still gas) is supplied to the compressor 12a-c (usually a multistage, intercooled compressor that is used to prepare the CO2 for storage).

    [0032] At the compressor 12a-c the CO2 is compressed up to or above the critical pressure (critical pressure 72.9 bar or 7.39 MPa); then at the heat exchanger 18 the CO2 compressed at or above the critical pressure is cooled.

    [0033] Depending on the availability of cooling media and specific design, the CO2 can be either:
    • compressed at the compressor 12a-c at or above the critical pressure and then condensed at the heat exchanger 18; the condensed CO2 at a pressure above the critical pressure is then pumped via the pump 13,
    • compressed to the final pressure at the compressor 12a-c; the final pressure is usually about 100 bar (in this case the pump 13 is not needed), cooling after compression at the heat exchanger 18 is possible at a temperature above or below the critical pressure,
    • compressed at the compressor 12a-c at or above the critical pressure and cooled to a temperature below the critical temperature at the heat exchanger 18; the compressed CO2 is then pumped via the pump 13,
    • compressed at the compressor 12a-c at or above the critical pressure, no cooling is provided in this case or cooling at the heat exchanger 18 to a temperature above the critical temperature, such that the CO2 is in supercritical state.


    [0034] Naturally also other combinations of compression and cooling are possible.

    [0035] The supercritical CO2, i.e. CO2 at or above the critical pressure and at or above the critical temperature (304.25 K) has a high density and can thus be pumped.

    [0036] Likewise, the CO2 at or above the critical pressure and below the critical temperature (304.25 K) has a high density and can be pumped. This region is sometimes called the dense phase region.

    [0037] At the pump 13 the supercritical CO2 or CO2 in the dense phase region is further compressed for storage. Downstream the pump 13 the pressure of the supercritical CO2 is 100 bar or more.

    [0038] Supercritical pressure CO2 (the temperature of the supercritical pressure CO2 can be the supercritical temperature, or it can be above or below the supercritical temperature) is thus preferably supplied from a position downstream the compressor 12a-c and upstream or downstream the pump 13 (when provided) to the mixing system 24. Likewise, heavy residue is supplied from the fuel supply 20 to the mixing system 24. At the mixing system 24 the heavy residue and supercritical pressure CO2 form a mixture.

    [0039] The supercritical pressure CO2 is a very good solvent for heavy residue. For this reason, the mixture of heavy residue and supercritical pressure CO2 can contain a large amount of CO2, such that the viscosity of the mixture allows injection in the combustion chamber 1.

    [0040] In addition, in order to adjust the viscosity, the mixture (the temperature of the mixture after mixing is typically below 60°C) is heated at the heat exchanger 29. In addition to the heating at the heat exchanger 29, also the supercritical pressure CO2 and/or the heavy residue can be heated at the heat exchangers 27a, 27b, 28, in such a way that that the temperature of the mixture containing the heavy residue and the supercritical pressure CO2 falls in the preferred temperature range.

    [0041] The preferred range for the temperature of the mixture is between 50-160°C, with a more preferred range between 60-90°C; the temperature is thus well below the coking temperature for the heavy residue.

    [0042] From the mixing system 24 the mixture is supplied to the injectors 26 and is injected into the combustion chamber 1.

    [0043] Advantageously, after the injection in the combustion chamber 1, the pressure of the mixture (containing supercritical pressure CO2 and heavy residue) suddenly drops. The pressure drop causes a sudden expansion of the COz (up to 10 times or more). Since the CO2 is mixed with the heavy residue, this expansion helps atomization of heavy residue and its dispersion through the combustion chamber 1. Atomization and dispersion through the combustion chamber 1 help a complete and clean combustion.

    [0044] Figure 5 shows the injectors 26 with nozzles 30, jets of mixtures 31 and the expanding CO2 that promotes heavy residue dispersion through the combustion chamber 1 and atomization.

    [0045] The fuel such as heavy residue atomized and dispersed through the combustion chamber can thus combust with air or oxygen.

    [0046] Figure 6 shows an example of the nozzle 30; in this figure the arrow indicates the flow through the nozzle 30. In addition figure 6 shows the convergent-divergent design of the nozzle 30 that helps preventing excessive erosion.

    [0047] The present invention also refers to a method for supplying a fuel into a combustion chamber as described in claim 1.

    [0048] The mixture contains between 10-70% by weight of supercritical pressure CO2 and preferably between 15-25% by weight of supercritical pressure CO2.

    [0049] The mixture is heated in order to obtain a heated mixture, whose viscosity is preferably between 15-30 centipoise. This viscosity allows easy injection of the heavy residue through the injector 26.

    [0050] The temperature of the heated mixture is between 50-160°C and preferably between 60-90°C.

    [0051] The mixture and/or the fuel and/or the supercritical pressure CO2 are heated by cooling the flue gas.

    REFERENCE NUMBERS



    [0052] 
    1
    combustion chamber
    2
    flue gas
    3
    flue gas treatment system
    5
    compressor
    6
    mercury removal unit
    7
    dryer
    8
    heat exchanger
    9
    heat exchanger
    10
    separation unit
    12a-c
    compressor
    13
    pump
    14
    storage
    15a, b
    stage of condensation
    16a, b
    condensed CO2
    17
    gas
    18
    heat exchanger
    20
    fuel supply
    22
    supercritical pressure CO2 supply
    24
    mixing system
    26
    injector
    27a, b
    heat exchanger
    28
    heat exchanger
    29
    heat exchanger
    30
    nozzle
    31
    jet of mixture
    32
    CO2



    Claims

    1. A method for supplying a fuel into a combustion chamber (1), characterised by

    mixing the fuel with supercritical pressure CO2 forming a mixture,

    injecting the mixture into a combustion chamber (1) having a pressure lower than the CO2 critical pressure, characterised by:

    heating the mixture in order to obtain a heated mixture; and

    discharging a flue gas (2) from the combustion chamber (1); and

    using the flue gas to heat the mixture.


     
    2. The method of claim 1, characterised in that the supercritical pressure CO2 contained in the mixture is in the supercritical state.
     
    3. The method of claim 1, characterised in that the mixture contains between 10-70% by weight of supercritical pressure CO2.
     
    4. The method of claim 1, characterised in that the mixture contains between 15-25% by weight of supercritical pressure CO2.
     
    5. The method of claim 1, characterised in that the mixture and/or the fuel and/or the supercritical pressure CO2 are heated in order to obtain a heated mixture with a viscosity between 15-30 centipoise.
     
    6. The method of claim 1, characterised in that the temperature of the heated mixture is between 50-160°C.
     
    7. The method of claim 1, characterised in that the temperature of the heated mixture is between 60-90°C.
     
    8. The method of claim 1, characterised in that the fuel has a viscosity equal to or greater than 150 centipoise at a temperature of 100°C.
     
    9. The method of any preceding claim, characterised in that CO2 is separated from other gas in the flue gas.
     
    10. The method of claim 9, characterised in that said separated CO2 is compressed up to or above the supercritical pressure, and supplied to a mixing system for said mixing with the fuel.
     
    11. The method of any preceding claim, characterised in that a temperature of the supercritical pressure CO2 is below the supercritical temperature.
     
    12. A system for supplying a fuel into a combustion chamber (1), characterised by comprising a fuel supply (20),

    a supercritical pressure CO2 supply (22),

    a mixing system (24) for forming a mixture of fuel and supercritical pressure CO2,

    at least an injector (26) connected to the mixing system (24), the at least an injector (26) for injecting the mixture into the combustion chamber (1),

    the combustion chamber (1) having a pressure lower than the CO2 critical pressure, characterised by further comprising at least a heat exchanger 29) for heating the mixture using flue gas.


     
    13. The system of claim 12, further comprising a separation unit (10) and a compressor (12a-c), wherein

    a. the separation unit (10) is configured to separate CO2 from other gases in the flue gas, supply said CO2 to the compressor (12a-c), said compressor being configured to compress the CO2 up to or above supercritical pressure; and wherein

    b. the system is further configured to supply said compressed CO2 to the mixing system (24) via supercritical pressure CO2 supply (22).


     
    14. The system of claim 12 or 13, characterized in that the supercritical pressure CO2 is supplied to the mixing system (24) at a temperature below the supercritical temperature.
     


    Ansprüche

    1. Verfahren zum Zuführen eines Brennstoffs in eine Verbrennungskammer (1), gekennzeichnet durch

    Mischen des Brennstoffs mit CO2 unter überkritischem Druck unter Bildung einer Mischung,

    Einspritzen der Mischung in eine Verbrennungskammer (1), die einen Druck aufweist, der niedriger als der kritische CO2-Druck ist, gekennzeichnet durch:

    Erhitzen der Mischung, um eine erhitzte Mischung zu erhalten; und

    Abführen eines Rauchgases (2) aus der Verbrennungskammer (1); und

    Verwenden des Rauchgases, um die Mischung zu erhitzen.


     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das CO2 unter überkritischem Druck in der Mischung in dem überkritischen Zustand enthalten ist.
     
    3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Mischung zwischen 10 und 70 Gew.-% CO2 unter überkritischem Druck enthält.
     
    4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Mischung zwischen 15 und 25 Gew.-% CO2 unter überkritischem Druck enthält.
     
    5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Mischung und/oder der Brennstoff und/oder das CO2 unter überkritischem Druck erhitzt werden, um eine erhitzte Mischung mit einer Viskosität zwischen 15 und 30 Centipoise zu erhalten.
     
    6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur der erhitzten Mischung zwischen 50 und 160 °C liegt.
     
    7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur der erhitzten Mischung zwischen 60 und 90 °C liegt.
     
    8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Brennstoff eine Viskosität aufweist, die gleich oder größer als 150 Centipoise bei einer Temperatur von 100 °C ist.
     
    9. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass CO2 von anderem Gas in dem Rauchgas getrennt ist.
     
    10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das getrennte CO2 bis zu oder über dem überkritischen Druck verdichtet und einem Mischsystem für das Mischen mit dem Brennstoff zugeführt wird.
     
    11. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass eine Temperatur des CO2 unter überkritischem Druck unter der überkritischen Temperatur liegt.
     
    12. System zum Zuführen eines Brennstoffs in eine Verbrennungskammer (1), gekennzeichnet durch Umfassen

    einer Brennstoffzufuhr (20),

    einer Zufuhr (22) von CO2 unter überkritischem Druck,

    eines Mischsystem (24) zum Bilden einer Mischung aus Brennstoff und CO2

    unter überkritischem Druck, mindestens eines Einspritzventils (26), das mit dem Mischsystem (24) verbunden ist, wobei das mindestens eine Einspritzventil (26) zum Einspritzen der Mischung in die Verbrennungskammer (1) ist,

    wobei die Verbrennungskammer (1) einen Druck aufweist, der niedriger als der kritische CO2-Druck ist, gekennzeichnet durch ferner umfassen mindestens eines Wärmetauschers 29) zum Erhitzen der Mischung unter Verwendung von Rauchgas.


     
    13. System nach Anspruch 12, ferner umfassend eine Trenneinheit (10) und einen Verdichter (12a-c),
    wobei

    a. die Trenneinheit (10) konfiguriert ist, um CO2 aus anderen Gasen in dem Rauchgas zu trennen, dem Kompressor (12a-c) das CO2 zuzuführen, wobei der Verdichter konfiguriert ist, um das CO2 bis zu oder über überkritischen Druck zu verdichten; und wobei

    b. das System ferner konfiguriert ist, um dem Mischsystem (24) das verdichtete CO2 über Zufuhr (22) von CO2 unter überkritischem Druck zuzuführen.


     
    14. System nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass dem Mischsystem (24) bei einer Temperatur unterhalb der überkritischen Temperatur das CO2 unter überkritischem Druck zugeführt wird.
     


    Revendications

    1. Procédé permettant d'introduire un carburant dans une chambre de combustion (1), caractérisé par le mélange du carburant avec du CO2 à pression supercritique formant un mélange, l'injection du mélange dans une chambre de combustion (1) ayant une pression inférieure à la pression critique du CO2, caractérisé par :

    le chauffage du mélange pour obtenir un mélange chauffé ; et

    l'évacuation d'un gaz de combustion (2) à partir de la chambre de combustion (1) ; et l'utilisation du gaz de combustion pour chauffer le mélange.


     
    2. Procédé selon la revendication 1, caractérisé en ce que le CO2 à pression supercritique contenu dans le mélange est à l'état supercritique.
     
    3. Procédé selon la revendication 1, caractérisé en ce que le mélange contient entre 10 et 70 % en poids de CO2 à pression supercritique.
     
    4. Procédé selon la revendication 1, caractérisé en ce que le mélange contient entre 15 et 25 % en poids de CO2 à pression supercritique.
     
    5. Procédé selon la revendication 1, caractérisé en ce que le mélange et/ou le combustible et/ou le CO2 à pression supercritique sont chauffés afin d'obtenir un mélange chauffé avec une viscosité entre 15 et 30 centipoises.
     
    6. Procédé selon la revendication 1, caractérisé en ce que la température du mélange chauffé est entre 50 et 160 °C.
     
    7. Procédé selon la revendication 1, caractérisé en ce que la température du mélange chauffé est entre 60 et 90 °C.
     
    8. Procédé selon la revendication 1, caractérisé en ce que le carburant a une viscosité égale ou supérieure à 150 centipoises à une température de 100 °C.
     
    9. Procédé selon l'une quelconque revendication précédente, caractérisé en ce que le CO2 est séparé d'un autre gaz dans le gaz de combustion.
     
    10. Procédé selon la revendication 9, caractérisé en ce que ledit CO2 séparé est comprimé jusqu'à la pression supercritique ou au-dessus de celle-ci, et introduit dans un système de mélange pour ledit mélange avec le carburant.
     
    11. Procédé selon une quelconque revendication précédente, caractérisé en ce qu'une température du CO2 à pression supercritique est inférieure à la température supercritique.
     
    12. Système permettant d'introduire un carburant dans une chambre de combustion (1), caractérisé par le fait de comprendre une alimentation en carburant (20), une alimentation en CO2 à pression supercritique (22),

    un système de mélange (24) pour former un mélange de carburant et de CO2 à pression supercritique, au moins un injecteur (26) relié au système de mélange (24), l'au moins un injecteur (26) permettant d'injecter le mélange dans la chambre de combustion (1),

    la chambre de combustion (1) ayant une pression inférieure à la pression critique du CO2, caractérisé par le fait de comprendre en outre au moins un échangeur de chaleur (29) pour chauffer le mélange à l'aide du gaz de combustion.


     
    13. Système selon la revendication 12, comprenant en outre une unité de séparation (10) et un compresseur (12a-c),
    dans lequel

    a. l'unité de séparation (10) est configurée pour séparer le CO2 d'autres gaz dans le gaz de combustion, introduire ledit CO2 dans le compresseur (12a-c), ledit compresseur étant configuré pour comprimer le CO2 jusqu'à la pression supercritique ou au-dessus de celle-ci ; et dans lequel

    b. le système est en outre configuré pour introduire ledit CO2 comprimé dans le système de mélange (24) par le biais d'une alimentation en CO2 à pression supercritique (22).


     
    14. Système selon la revendication 12 ou 13, caractérisé en ce que le CO2 à pression supercritique est introduit dans le système de mélange (24) à une température inférieure à la température supercritique.
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description