FIELD OF THE INVENTION
[0001] The invention relates to an outrigger assembly comprising an outrigger frame and
an outrigger beam movable in a horizontal extension direction with respect to the
outrigger frame in between a retracted position and an extended position. The outrigger
beam is located inside the outrigger frame in the retracted position and is extended
from the outrigger frame in the extended position. The outrigger beam has a proximal
end and a distal end with respect to the outrigger frame in the extended position
of the outrigger beam. The outrigger assembly further comprises an outrigger support
coupled to the distal end of the outrigger beam to allow supporting the outrigger
assembly in a supporting position of the outrigger support on a supporting surface
in the extended position of the outrigger beam. The invention further relates to any
vehicle, such as a mobile crane, provided with such an outrigger assembly with horizontally
extendable outrigger beams.
BACKGROUND OF THE INVENTION
[0002] Mobile cranes and other vehicles having an outrigger assembly are generally known.
The outrigger beams are extended from the outrigger frame and the vehicle, and the
outrigger supports are lowered onto the ground at a location where a heavy load is
to be handled. The extended outrigger beams provide a much higher stability to the
mobile crane and higher loads can be handled with increasing width of the extended
outrigger assembly. The width of the extended outrigger assembly is determined by
the length of the outrigger beams, while the length of the outrigger beams is limited
by the width of the vehicle in which the outrigger beams are housed in their retracted
position. Present vehicles with outrigger assemblies, especially mobile cranes, have
reached the limit of the maximum width of the extended outrigger assembly that can
be achieved. A further increased width, however, would increase stability or the maximum
load or load moment (load at a certain radius) that can be handled.
[0003] US 3,756,424 discloses a mobile crane having an outrigger assembly of which outrigger beams can
be extended from an outrigger frame to provide an extended position of the outrigger
beams and a supporting position of the outrigger assembly. In the supporting position,
an end of the outrigger beam being supported on the ground induces a first torque
that is balanced by a second torque provided by the outrigger beam extending over
a certain length still within the outrigger frame of the outrigger assembly. The extension
length of the outrigger beam from the outrigger frame is limited by the total length
of the outrigger beam, which is limited by the width of the mobile crane, and the
length of the outrigger beam remaining within the outrigger frame to induce the second
torque. This document discloses the preamble of claim 1.
SUMMARY OF THE INVENTION
[0004] It is an objective of the invention to provide an outrigger support having an increased
width for a given width of the outrigger frame, and thus of the vehicle incorporating
the outrigger assembly.
[0005] It is another or alternative objective of the invention to provide an outrigger support
of which an outrigger beam can be extended to multiple positions for supporting a
vehicle.
[0006] It is yet another or alternative objective of the invention to provide an outrigger
assembly providing efficient and secure extension of an outrigger beam.
[0007] At least one of the above objectives is achieved by an outrigger assembly for supporting
a vehicle on a supporting surface, the outrigger assembly comprising
- an outrigger frame;
- an outrigger beam,
the outrigger beam being movable along a horizontal extension direction with respect
to the outrigger frame in between a retracted position, in which the outrigger beam
is located within the outrigger frame, and an extended position, in which the outrigger
beam is extended from the outrigger frame, and
the outrigger beam having a proximal end and a distal end with respect to the outrigger
frame in the extended position of the outrigger beam; and
- an outrigger support coupled to the distal end of the outrigger beam to allow supporting
the outrigger assembly on the supporting surface in a supporting position of the outrigger
support,
the outrigger assembly being configured such that, in the extended position of the
outrigger beam and the supporting position of the outrigger support,
-- a first torque acts on the outrigger beam, the first torque being determined by
a first vertical force acting upwards at a first location on the distal end of the
outrigger beam and a second vertical force acting downwards at a second location on
the outrigger beam, the second location being separated from the first location by
a first horizontal distance towards the proximal end of the outrigger beam, the first
and second vertical forces acting as a result of the outrigger beam being supported
by the outrigger support and the frame being supported by the outrigger beam, respectively,
and
-- a second torque acts on the outrigger beam to balance the first torque, the second
torque being determined by interaction between the outrigger frame and the outrigger
beam,
wherein the second torque is at least substantially determined by a first horizontal
force acting outwards at a third location on the outrigger beam with respect to the
outrigger frame and a second horizontal force acting inwards at a fourth location
on the outrigger beam with respect to the outrigger frame, the fourth location being
separated from the third location by a first vertical distance in a downward direction.
Having the second torque being determined by horizontal forces provides that the outrigger
beam can be extended further from the outrigger frame to allow an increased width
of the outrigger assembly in the extended position. The (first and second) horizontal
forces are to be understood as at least substantially horizontal forces. Additionally
a vertical force component may be present, which could be due to practical implementation
reasons. According to the invention the second torque is determined, or at least substantially
determined, by substantially horizontal forces. To balance is to be understood as
that the second torque, at least substantially, counteracts or neutralizes the first
torque. Further, the distal en proximal ends are to be understood as distal and proximal
end regions, and are not limited to the extreme ends only.
[0008] In an embodiment the second and third locations are at the proximal end of the outrigger
beam, optionally at the extreme end of the proximal end.
[0009] In an embodiment the second and third locations are coinciding locations.
[0010] In an embodiment the outrigger beam is movable along the extension direction to a
first semi-extended position in between the retracted position and the extended position,
the outrigger assembly being configured such that, in the first semi-extended position
of the outrigger beam and the supporting position of the outrigger support,
-- a third torque acts on the outrigger beam, the third torque being determined by
a third vertical force acting upwards at the first location on the distal end of the
outrigger beam and a fourth vertical force acting downwards at a fifth location on
the outrigger beam, the fifth location being separated from the first location by
a second horizontal distance smaller then the first horizontal distance towards the
proximal end of the outrigger beam, the third and fourth vertical forces acting as
a result of the outrigger beam being supported by the outrigger support and the frame
being supported by the outrigger beam, respectively, and
-- a fourth torque acts on the outrigger beam to balance the third torque, the fourth
torque being determined by interaction between the outrigger frame and the outrigger
beam,
wherein the fourth torque is at least substantially determined by a third horizontal
force acting outwards at a sixth location on the outrigger beam with respect to the
outrigger frame and a fourth horizontal force acting inwards at a seventh location
on the outrigger beam with respect to the outrigger frame, the seventh location being
separated from the sixth location by a second vertical distance in a downward direction.
This efficiently provides for an additional position of the outrigger beam. Again,
the (third and fourth) horizontal forces are to be understood as at least substantially
horizontal forces, and the fourth torque is again to be understood as being determined,
or at least substantially determined, by substantially horizontal forces. Additionally
a vertical force component may be present, which could be due to practical implementation
reasons. According to the invention the fourth torque is predominantly determined
by substantially horizontal forces. To balance is to be understood as that the fourth
torque, at least substantially, counteracts or neutralizes the third torque.
[0011] In an embodiment the fifth and sixth locations are coinciding locations.
[0012] In an embodiment the fourth and seventh locations are coinciding locations.
[0013] In an embodiment the outrigger beam is movable along the extension direction to a
second semi-extended position in between the retracted position and the extended position,
the outrigger assembly being configured such that, in the second semi-extended position
of the outrigger beam and the supporting position of the outrigger support,
-- a fifth torque acts on the outrigger beam, the fifth torque being determined by
a fifth vertical force acting upwards at the first location on the distal end of the
outrigger beam and a sixth vertical force acting downwards at an eighth location on
the outrigger beam, the eighth location being separated from the first location by
a third horizontal distance smaller then the first horizontal distance towards the
proximal end of the outrigger beam, the fifth and sixth vertical forces acting as
a result of the outrigger beam being supported by the outrigger support and the frame
being supported by the outrigger beam, respectively, and
-- a sixth torque acts on the outrigger beam to balance the fifth torque, the sixth
torque being determined by interaction between the outrigger frame and the outrigger
beam,
wherein the sixth torque is determined by a seventh vertical force acting downwards
at a ninth location on the outrigger beam and an eighth vertical force acting upwards
at a tenth location on the outrigger beam, the tenth location being separated from
the ninth location by a fourth horizontal distance towards the proximal end of the
outrigger beam.
This efficiently provides for yet another additional position of the outrigger beam.
[0014] In an embodiment the second semi-extended position is in between the retracted position
and the first semi-extended position, and the third horizontal distance is smaller
then the second horizontal distance.
[0015] In an embodiment the outrigger frame comprises a movable cam that is movable into
a first or a second recess, respectively, corresponding with the second and the third
location or the fifth and sixth location, respectively, such as to allow the second
vertical force and first horizontal force or to allow the fourth vertical force and
the third horizontal force, respectively, to act on the outrigger beam in the extended
position or the first semi-extended position, respectively, of the outrigger beam,
optionally the movable cam being a rotatable cam, optionally the movable cam being
operable by a cam actuator, optionally an actuation cylinder, optionally a pneumatic,
hydraulic, electrical or manual controlled actuation cylinder, optionally the first
or second recess being provided in an upper surface of the outrigger beam, which provides
a very fast and secure locking of the outrigger beam and transfer of outward horizontal
and downward vertical forces onto the outrigger beam.
[0016] In an embodiment the outrigger frame comprises a movable cam that is movable into
a first recesses corresponding with the second and the third location such as to allow
the second vertical force and first horizontal force to act on the outrigger beam
in the extended position of the outrigger beam, and movable into a second recesses
corresponding with the fifth and the sixth location such as to allow the fourth vertical
force and the third horizontal force to act on the outrigger beam in the first semi-extended
position of the outrigger beam, optionally the movable cam being a rotatable cam,
optionally the movable cam being operable by a cam actuator, optionally an actuation
cylinder, optionally a pneumatic, hydraulic, electrical or manual controlled actuation
cylinder, optionally the first and second recesses being provided in an upper surface
of the outrigger beam, which also provides a very fast and secure locking of the outrigger
beam and transfer of outward horizontal and downward vertical forces onto the outrigger
beam.
[0017] In an embodiment the outrigger assembly comprises a slider element having first and
second ends, the first end cooperating with the outrigger beam and the second end
cooperating with the outrigger frame to allow extending the outrigger beam from the
outrigger frame and to allow the second horizontal force to act on the outrigger beam
in the extended position of the outrigger beam, optionally the first end of the slider
element being slidably coupled to the outrigger beam to allow moving of the slider
element with respect to the outrigger beam, which provides for a secure transfer of
horizontal inward forces onto the outrigger beam.
[0018] In an embodiment the outrigger frame comprises a first stop, the second end of the
slider element is slidable with respect to the outrigger frame upon extension of the
outrigger beam from the outrigger frame, and the second end cooperates with the first
stop to allow the second horizontal force to act on the outrigger beam in the extended
position of the outrigger beam.
[0019] In an embodiment the first end of the slider element cooperates with the outrigger
beam and the second end cooperates with the outrigger frame to allow extending the
outrigger beam from the outrigger frame and to allow the fourth horizontal force to
act on the outrigger beam in the first semi-extended position of the outrigger beam,
the outrigger frame comprises a second stop, and the second end of the slider element
cooperates with the second stop to allow the fourth horizontal force to act on the
outrigger beam in the first semi-extended position of the outrigger beam.
[0020] In an embodiment the first end of the slider element is slidably coupled to the outrigger
beam to allow moving of the slider element with respect to the outrigger beam in between
a first slider element position, in which the second end of the slider element is
held by the outrigger beam, and a second slider element position, in which the second
end is allowed to slide with respect to the outrigger frame, which allows that the
slider element is housed within the outrigger beam to not take additional with in
the retracted position and to allow cooperation with multiple stops on the outrigger
frame.
[0021] In an embodiment the outrigger assembly comprises first and second outrigger beam
actuators operable for moving the outrigger beam and the outrigger frame with respect
to one another, and for moving the slider element and the outrigger beam with respect
to one another.
[0022] In an embodiment the outrigger assembly is configured such that the first outrigger
beam actuator is operable to allow moving the outrigger beam together with the second
outrigger beam actuator and the slider element with respect to the outrigger frame,
and the second actuator is operable to allow moving the outrigger beam with respect
to the slider element and the outrigger frame.
[0023] In an embodiment the first outrigger beam actuator comprises a first outrigger actuation
cylinder having a first cylinder part and a first piston part movable with respect
to the first cylinder part and coupled to the outrigger frame, the second outrigger
beam actuator comprises a second outrigger actuation cylinder having a second cylinder
part and a second piston part movable with respect to the second cylinder part and
couple to the outrigger beam, and the first and second cylinder parts and the first
end of the slider element fixedly coupled to one another.
[0024] In another aspect the invention provides for a vehicle comprising an outrigger assembly
as referred to above.
[0025] In an embodiment the vehicle is a mobile crane.
BRIEF DESCRIPTION OF THE DRAWINGS
[0026] Further features and advantages of the invention will become apparent from the description
of the invention by way of non-limiting and non-exclusive embodiments. These embodiments
are not to be construed as limiting the scope of protection. The person skilled in
the art will realize that other alternatives and equivalent embodiments of the invention
can be conceived and reduced to practice without departing from the scope of the invention.
Embodiments of the invention will be described with reference to the accompanying
drawings, in which like or same reference symbols denote like, same or corresponding
parts, and in which
Figure 1 shows a side view of an outrigger assembly of the prior art;
Figure 2 shows a mobile crane having an outrigger assembly according to the invention;
Figure 3 shows a perspective view of an embodiment of an outrigger assembly according
to the invention;
Figures 4A to 4D show side views of the outrigger assembly of figure 3 with a single
outrigger beam shown in cross-section from the retracted position in figure 4A through
intermediate positions in figures 4B and 4C to the extended position with the outrigger
support in the supporting position on a supporting surface in figure 4D;
Figures 5A to 5C show side views of the outrigger assembly of figure 3 with a single
outrigger beam shown in cross-section from the retracted position in figure 5A through
an intermediate positions in figures 5B to the first semi-extended position with the
outrigger support in the supporting position on a supporting surface in figure 5C;
and
Figure 6A and 6B show side views of the outrigger assembly of figure 3 with a single
outrigger beam shown in cross-section from the retracted position in figure 6A to
the second semi-extended position with the outrigger support in the supporting position
on a supporting surface in figure 6B.
DETAILED DESCRIPTION OF EMBODIMENTS
[0027] Figure 2 shows a mobile crane in a position for operating the crane part. The outrigger
beams 200 of the outrigger assemblies 10 are extended from the outrigger frame 100
that is part of the mobile crane, and the outrigger supports 300 are put in a supporting
position on the supporting surface S, which may be road surface but can be any other
generally horizontal surface. The outrigger support in the extended position provides
stability to the crane so as to allow manipulating heavy loads. Figure 3 shows an
outrigger assembly 10 according to the invention in more detail, with both outrigger
beams 200 in the extended position and the outrigger supports 300 in the supporting
position to support the outrigger beams on the supporting surface S.
[0028] Figures 4A to 4D show four stages to provide the outrigger beam 200 from the retracted
position P4 of figure 4A, in which the outrigger beam is located within the outrigger
frame 100, to the extended position P1 of figure 4D, in which the outrigger beam is
fully extended from the outrigger frame. Figures 4B and 4C show intermediate positions
of the outrigger beam 200 when moving along the horizontal extension direction E with
respect to the outrigger frame 100 to the extended position of figure 4D. The outrigger
beam is movable by operating the outrigger beam actuators 150, 160.
[0029] The outrigger frame 100 comprises a movable cam 400 that is moved into the recess
211 provided in the top side surface of the outrigger beam in the fully extended position
P1 shown in figure 4D. The cam is rotatable around a rotation axis 410 and can be
rotated into and out of the recess 211 by a cam actuator 450 in the embodiment shown,
but can also be moved in any other suitable manner into and out of the recess. The
cam actuator 450 is a pneumatic controlled actuation cylinder in the embodiment shown,
but can be any other suitable actuator such as, for instance, a hydraulic, manual
or electrical controlled actuation cylinder. At its bottom side the outrigger beam
is coupled to the outrigger frame through a slider element 500. The slider element,
in the form of a slider rod in the embodiment shown, has first and second ends 501,
502. The first end 501 of the slider element is held in an elongated slot 250 in the
bottom region of the outrigger beam 200 by a projection of the slider element extending
into the slot. The projection at the first end 501 of the slider element can slide
along the slot between first and second slot ends 251, 252. Figure 4D of the extended
position of the outrigger beam shows that the projection at the first end 501 of the
slider element cooperates with the first slot end 251. A projection at the second
end 502 of the slider element 500 cooperates with a first stop 111 in the bottom region
of the outrigger frame 100.
[0030] The outrigger support 300 is in its support position SP in the extended position
P1 of the outrigger beam of figure 4D. In the support position the footplate 310 of
the outrigger support has been lowered onto the supporting surface S by operating
the actuation cylinder 320 of the outrigger support. Figures 4A to 4C show the footplate
310 of the outrigger support 300 in a raised position, which enables moving the outrigger
beam in and out in between the retracted position P4 of figure 4A and the extended
position P1 of figure 4D. The outrigger support 300 is coupled to the distal end 202
of the outrigger beam 200, while the outrigger beam at its proximal end 201 is coupled
to the outrigger frame 100. The proximal and distal ends 201, 202 of the outrigger
beam are defined with respect to the outrigger frame. In the extended position the
distal end 202 of the outrigger beam 200 is positioned away from the outrigger frame,
while the proximal end 201 is positioned close to the outrigger frame. The proximal
and distal ends are each intended to indicate a zone at the ends and not to indicate
the extreme end.
[0031] In the extended position of the outrigger beam 100 of figure 4D the outrigger support
300 supports, together with the other outrigger support(s) coupled to the other outrigger
beam(s), the weight of the vehicle, such as a mobile crane, of which it is a part,
and its load and load moment. The outrigger support 300 causes a first vertical force
Fv1 acting upwards at a first location L1 on the distal end 202 of the outrigger beam.
The outrigger frame is supported on the outrigger beam through the cam 400 that is
inserted into the first recess 211, which causes a second vertical force Fv2 acting
downwards at a second location L2 on the outrigger beam. The second location L2 is
separated from the first location L1 by a first horizontal distance Dh1 towards the
proximal end of the outrigger beam. In the embodiment shown, the second location L2
is near the extreme end of the proximal end of the outrigger beam. Actually, the forces
may be distributed over a zone, but can be regarded to act on a single location on
the frame and are shown as such in the figures. The first and second vertical forces
Fv1, Fv2 separated by the first horizontal distance Dh1 cause a first torque to act
on the outrigger beam.
[0032] The first torque is balanced by a second torque determined by interaction between
the outrigger frame and the outrigger beam through the cam 400 and slider element
500. The cam 400 coupled to the outrigger frame 100 and inserted into the first recess
211 causes a first horizontal force Fh1 acting outwards at a third location L3 on
the outrigger beam. Actually, the second and third locations are the same, or virtually
the same, as the second vertical force Fv2 and the first horizontal force Fh1 are
both caused by the cam 400 acting on the outrigger beam. Generally, the second and
third locations L2, L3 need not be the same. The slider element 500 by the projection
at its first end 501 inserted into the slot 250 and cooperating with the first slot
end 251 causes a second horizontal force Fh2 acting inwards at a fourth location L4
on the outrigger beam next to the first slot end 251. The horizontal forces are defined
as outward or inward with respect to the outrigger frame, an outward direction being
directed away from the outrigger frame and an inward direction being directed to the
inside of the outrigger frame. The second horizontal force Fh2 can be exerted by the
slider element since its second end 502 cooperates with the first stop 111 on the
outrigger frame 100. The fourth location L4 is separated from the third location L3
by a first vertical distance Dv1 in a downward direction. The first and second horizontal
forces Fh1, Fh2 separated by the first vertical distance Dv1 cause the second torque
to act on the outrigger beam. The slider element 500 also causes a minor downward
vertical force component acting on the outrigger beam, which is due to the practical
implementation of the embodiment shown. The same may be the case for providing the
first horizontal force. However, these forces are substantially horizontal. Substantially
the horizontal force components act to cause the second torque.
[0033] Figure 1 shows an outrigger assembly of the prior art with the outrigger beam 200
in its extended position from the outrigger frame 100 and the outrigger support 300
in the support position on the supporting surface. In the prior art outrigger assembly
a torque caused by vertical forces FvA and FvB acting on locations LA and LB, respectively,
is balanced by another torque caused by vertical forces FvC and FvD acting on locations
LB and LC, respectively. The locations La and LB are separated by a horizontal distance
DhA, and the locations LB and LC are separated by a horizontal distance DhB. The torque
by vertical forces FvA, FvB and horizontal distance DhA compares to the first torque
by the first and second vertical forces Fv1, Fv2 and first horizontal distance Dh1,
while the torque by vertical forces FvC, FcD and horizontal distance DhB is replaced
by the second torque by the first and second horizontal forces Fh1, Fh2 and first
vertical distance Dv1 in the outrigger assembly according to the invention. The prior
art outrigger assembly requires a considerable length of outrigger beam to remain
inserted inside the outrigger frame to allow for the torque by vertical forces FvC
and FvD and horizontal distance DhB, which is not required by the outrigger assembly
according to the invention.
[0034] Figures 5A to 5C show three stages to provide the outrigger beam 200 from the retracted
position P4 of figure 5A, in which the outrigger beam is located within the outrigger
frame 100, to a first semi-extended position P2 of figure 5C, in which the outrigger
beam is partly extended from the outrigger frame. The first semi-extended position
P2 is in between the retracted position P4 and the extended position P1 of figure
4D. Figure 5B shows an intermediate position of the outrigger beam 200 when moving
along the horizontal extension direction E with respect to the outrigger frame 100
to the first semi-extended position of figure 5C.
[0035] The outrigger support 300 is in the supporting position SP in the first semi-extended
position P2 shown in figure 5C to support the outrigger assembly on the supporting
surface S. The rotatable cam is further rotated to be inserted into the second recess
212 provided in the top side surface of the outrigger beam 200 in the first semi-extended
position. At its bottom side the outrigger beam is again coupled to the outrigger
frame through the slider element 500. The first end 501 of the slider element is held
in the elongated slot 250 in the bottom region of the outrigger beam 200 by the projection
of the slider element extending into the slot. Figure 5C of the first semi-extended
position of the outrigger beam shows that the projection at the first end 501 of the
slider element cooperates with the first slot end 251. The projection at the second
end 502 of the slider element 500 cooperates with a second stop 112 in the bottom
region of the outrigger frame 100.
[0036] In the first semi-extended position of the outrigger beam of figure 5C the outrigger
support 300 supports the outrigger beam and outrigger frame. The outrigger support
300 causes a third vertical force Fv3 acting upwards at the first location L1 on the
distal end 202 of the outrigger beam. The outrigger frame is again supported on the
outrigger beam through the cam 400 that is now inserted into the second recess 212,
which causes a fourth vertical force Fv4 acting downwards at a fifth location L5 on
the outrigger beam. The fifth location L5 is separated from the first location L1
by a second horizontal distance Dh2 towards the proximal end 201 of the outrigger
beam. The second horizontal distance Dh2 is smaller than the first horizontal distance
Dh1, and the second location L5 is at a horizontal position in between the first and
second locations L1, L2. The third and fourth vertical forces Fv3, Fv4 separated by
the second horizontal distance Dh2 cause a third torque to act on the outrigger beam.
[0037] The third torque is balanced by a fourth torque determined by interaction between
the outrigger frame and the outrigger beam through again the cam 400 and slider element
500. The cam 400 coupled to the outrigger frame 100 and inserted into the second recess
212 causes a third horizontal force Fh3 acting outwards at a sixth location L6 on
the outrigger beam. The fifth and sixth locations L5, L6 are the same, or virtually
the same, as the fourth vertical force Fv4 and the third horizontal force Fh3 are
both caused by the cam 400 acting on the outrigger beam. Generally, the fifth and
sixth locations L5, L6 need not be the same. The slider element 500 by the projection
at its first end 501 inserted into the slot 250 and cooperating with the first slot
end 251 causes a fourth horizontal force Fh4 acting inwards at a seventh location
L7 on the outrigger beam next to the first slot end 251. Actually, the fourth and
seventh locations L4, L7 are the same locations in the embodiment shown. The fourth
horizontal force Fh4 can be caused by the slider element since its second end 502
cooperates with the second stop 112 on the outrigger frame 100. The seventh location
L7 is separated from the sixth location L6 by a second vertical distance Dv2 in a
downward direction. The first and second vertical distances Dv1, Dv2 are the same
in the embodiment shown. The third and fourth horizontal forces Fh3, Fh4 separated
by the second vertical distance Dv2 cause the fourth torque to act on the outrigger
beam. Again, as has been described for the extended position P1, vertical force components
might be present in addition to the horizontal forces. It is substantially the horizontal
force components acting to cause the fourth torque.
[0038] Figures 6A and 6B show two stages to provide the outrigger beam 200 from the retracted
position P4 of figure 6A, in which the outrigger beam is located within the outrigger
frame 100, to a second semi-extended position P3 of figure 6B, in which the outrigger
beam is partly extended from the outrigger frame. No intermediate positions are shown.
In the second semi-extended position of figure 6B the outrigger beam 200 extends less
far from the outrigger frame 100 than in the first semi-extended position of figure
5C.
[0039] The outrigger support 300 is in the supporting position SP in the second semi-extended
position P3 shown in figure 6B to support the outrigger assembly on the supporting
surface S. The outrigger support 300 causes a fifth vertical force Fv5 acting upwards
at the first location L1 on the distal end 202 of the outrigger beam. The outrigger
frame is in the second semi-extended position P3 directly supported on the outrigger
beam at an eighth location L8 to cause a sixth vertical force Fv6 acting downwards
at the eighth location L8 on the outrigger beam. The eighth location L8 is separated
from the first location L1 by a third horizontal distance Dh3 towards the proximal
end 201 of the outrigger beam. The third horizontal distance Dh3 is smaller than the
first horizontal distance Dh1, and the eighth location L8 is at a horizontal position
in between the first and second locations L1, L2. In the embodiment shown, the third
horizontal distance Dh3 is also smaller thank the second horizontal distance Dh2,
and the eighth location L8 is at a horizontal position in between the first and fifth
locations L1, L5. The fifth and sixth vertical forces Fv5, Fv6 separated by the third
horizontal distance Dh3 cause a fifth torque to act on the outrigger beam.
[0040] The fifth torque is balanced by a sixth torque determined by direct interaction between
the outrigger frame and the outrigger beam. The outrigger frame causes a seventh vertical
force Fv7 acting downwards at a ninth location L9 on the outrigger beam. The eighth
and ninth locations L8, L9 are actually the same, or virtually the same, in the embodiment
shown, as there is a limited contact area between the upper side of the outrigger
beam and the outrigger frame. Generally, the eighth and ninth locations L8, L9 need
not be the same. Further, the outrigger frame causes an eighth vertical force Fv8
acting upwards at a tenth location L10 on the outrigger beam. The tenth location L10
is separated from the eighth location L8 by a fourth horizontal distance Dh4 in a
direction toward the proximal end 201 of the outrigger beam. The seventh and eighth
vertical forces Fv7, Fv8 separated by the fourth horizontal distance Dh4 cause the
sixth torque to act on the outrigger beam. Since, the sixth and seventh vertical forces
Fv6, Fv7 act on (virtually) the same location L8, L9, they will add to a single vertical
force Fv6+Fv7. However, still two torques act on the outrigger beam to balance one
another.
[0041] The outrigger assembly comprises first and second outrigger beam actuators 150, 160
operable for moving the outrigger beam 200 and the outrigger frame 100 with respect
to one another, and for moving the slider element 500 and the outrigger beam 200 with
respect to one another. The first outrigger beam actuator 150 operates to move the
outrigger beam 200 together with the second outrigger beam actuator 160 and the slider
element 500 with respect to the outrigger frame 100. The second actuator 160 operates
to move the outrigger beam 200 with respect to the slider element 500 and the outrigger
frame 100. In the embodiment shown the first outrigger beam actuator 150 comprises
a first outrigger actuation cylinder having a first cylinder part 151 and a first
piston part 152 movable with respect to the first cylinder part and coupled to the
outrigger frame 100, and the second outrigger beam actuator 160 comprises a second
outrigger actuation cylinder having a second cylinder part 161 and a second piston
part 162 movable with respect to the second cylinder part and couple to the outrigger
beam 200. The first and second cylinder parts 151, 161 and the first end of the slider
element are fixedly coupled to one another.
[0042] In the retracted position P4 shown in figures 4A, 5A and 6A the slider element 500
is in a first slider element position SE1, in which the second end 502 of the slider
element is held by the outrigger beam 200. In the first slider element position SE1
the first end 501 of the slider element is at the second slot end 252 of the slot
250, while the second end 502 of the slider element 500 is kept in a slider element
recess 260 at the extreme end of the proximal end of the outrigger beam 200. To arrive
in the second semi-extended position P3, the first outrigger beam actuator 160 is
operated to extend the first piston part 152 out of the first cylinder part 151 to
move and extend the outrigger beam 200 out of the outrigger frame 100, while the slider
element 500 is kept in the first slider element position SE1, as is shown in figure
6B. The support foot 310 of the outrigger support 300 is then lowered onto the supporting
surface S by operation of the support cylinder 320 to support the outrigger assembly
on the supporting surface and to finally arrive in the position as shown in figure
6B.
[0043] To arrive in the first semi-extended position P2 of figure 5C, the second outrigger
beam actuator 160 is operated to extend the second piston part 162 out of the second
cylinder part 161 to move and extend the outrigger beam 200 out of the outrigger frame
100, as is shown for the intermediate position in figure 5B. In this action the slider
element 500 does not move with respect to the outrigger frame 100 since the first
end 501 of the slider element 500 is fixedly connected to the first and second cylinder
parts 151, 161. Subsequently, the first outrigger beam actuator 150 is operated to
extend the first piston part 152 out of the first cylinder part 151 to further move
and extend the outrigger beam 200 out of the outrigger frame 100 to arrive in the
outrigger beam position as is shown in figure 5C. Operation of the first and second
outrigger beam actuators 150, 160 may also overlap to arrive in the first semi-extended
position P2 of figure 5C. The second end 502 of the slider element 500 will slide
over the outrigger frame 100 and end up abutting against the second stop 112 on the
outrigger frame. When the first and second outrigger beam actuators 150, 160 have
been operated to move the outrigger beam in a position corresponding to the first
semi-extended position P2, the cam actuator 450 is operated to rotate the cam 400
around its rotation axis 410 to move the cam into the second recess 212 in the top
side of the outrigger beam. The support foot 310 of the outrigger support 300 is then
lowered onto the supporting surface S by operation of the support cylinder 320 to
support the outrigger assembly on the supporting surface and to finally arrive in
the position as shown in figure 5C.
[0044] To arrive in the extended position P1 of figure 4D, the first outrigger beam actuator
160 is operated to extend the first piston part 152 out of the first cylinder part
151 to move and extend the outrigger beam 200 out of the outrigger frame 100, while
the slider element 200 is kept in the first slider element position SE1, as has been
described earlier with respect to figure 6B. The second end 502 of the slider element
should be at a horizontal position in between first and second stops 111, 112 or,
preferably, above the second stop 112, as shown in figure 4B, when the second outrigger
beam actuator 160 is operated to extend the second piston part 162 out of the second
cylinder part 161 to further move and extend the outrigger beam 200 out of the outrigger
frame 100. In case only the second outrigger beam actuator 160 is operated from the
intermediate position shown in figure 4B, one arrives at the intermediate position
shown in figure 4C. In this action the slider element 500 does not move with respect
to the outrigger frame 100 since the first end 501 of the slider element 500 is fixedly
connected to the first and second cylinder parts 151, 161, as has been described earlier
with respect to figure 5B. Subsequently, the first outrigger beam actuator 150 is
operated to extend the first piston part 152 out of the first cylinder part 151 to
further move and extend the outrigger beam 200 out of the outrigger frame 100 to arrive
in the outrigger beam position as is shown in figure 4D. Operation of the first and
second outrigger beam actuators 150, 160 may also overlap to arrive from the outrigger
beam position of figure 4C into the outrigger beam position of figure 4D. This is
equivalent to what has been described earlier with respect to figure 5C. The second
end 502 of the slider element 500 will slide over the outrigger frame 100 and end
up abutting against the first stop 111 on the outrigger frame. When the first and
second outrigger beam actuators 150, 160 have been operated to move the outrigger
beam in a position corresponding to the extended position P1, the cam actuator 450
is operated to rotate the cam 400 around its rotation axis 410 to move the cam into
the first recess 211 in the top side of the outrigger beam. The support foot 310 of
the outrigger support 300 is then lowered onto the supporting surface S by operation
of the support cylinder 320 to support the outrigger assembly on the supporting surface
and to finally arrive in the position as shown in figure 4D.
[0045] Retracting the outrigger beam 100 from the extended position P1 of figure 4D, or
one of the first and second semi-extended positions P2, P3 of figures 5C and 6B, respectively,
into the retracted position P4 of figures 4A, 5A and 6A requires an appropriate reversal
of the above steps, which is apparent from the above description.
1. An outrigger assembly (10) for supporting a vehicle on a supporting surface (S), the
outrigger assembly comprising
- an outrigger frame (100);
- an outrigger beam (200),
the outrigger beam (200) being movable along a horizontal extension direction (E)
with respect to the outrigger frame (100) in between a retracted position (P4), in
which the outrigger beam is located within the outrigger frame, and an extended position
(P1), in which the outrigger beam is extended from the outrigger frame, and
the outrigger beam (200) having a proximal end (201) and a distal end (202) with respect
to the outrigger frame (100) in the extended position of the outrigger beam; and
- an outrigger support (300) coupled to the distal end of the outrigger beam (200)
to allow supporting the outrigger assembly (10) on the supporting surface (S) in a
supporting position (SP) of the outrigger support,
the outrigger assembly being configured such that, in the extended position of the
outrigger beam (200) and the supporting position of the outrigger support (300),
-- a first torque acts on the outrigger beam (200), the first torque being determined
by a first vertical force (Fv1) acting upwards at a first location (L1) on the distal
end (202) of the outrigger beam and a second vertical force (Fv2) acting downwards
at a second location (L2) on the outrigger beam, the second location being separated
from the first location by a first horizontal distance (Dh1) towards the proximal
end (201) of the outrigger beam, the first and second vertical forces acting as a
result of the outrigger beam being supported by the outrigger support (300) and the
outrigger frame (100) being supported by the outrigger beam, respectively, and
-- a second torque acts on the outrigger beam (200) to balance the first torque, the
second torque being determined by interaction between the outrigger frame (100) and
the outrigger beam,
characterised in that the second torque is at least substantially determined by a first horizontal force
(Fh1) acting outwards at a third location (L3) on the outrigger beam with respect
to the outrigger frame and a second horizontal force (Fh2) acting inwards at a fourth
location (L4) on the outrigger beam with respect to the outrigger frame, the fourth
location being separated from the third location by a first vertical distance (Dv1)
in a downward direction.
2. The outrigger assembly according to the preceding claim, wherein the second and third
locations (L2, L3) are at the proximal end (201) of the outrigger beam (200), optionally
at the extreme end of the proximal end.
3. The outrigger assembly according to any one of the preceding claims, wherein the second
and third locations (L2, L3) are coinciding locations.
4. The outrigger assembly according to any one of the preceding claims, wherein the outrigger
beam (200) is movable along the extension direction (E) to a first semi-extended position
(P2) in between the retracted position (P4) and the extended position (P1),
the outrigger assembly being configured such that, in the first semi-extended position
of the outrigger beam (200) and the supporting position of the outrigger support (300),
-- a third torque acts on the outrigger beam (200), the third torque being determined
by a third vertical force (Fv3) acting upwards at the first location (L1) on the distal
end (202) of the outrigger beam and a fourth vertical force (Fv4) acting downwards
at a fifth location (L5) on the outrigger beam, the fifth location being separated
from the first location by a second horizontal distance (Dh2) smaller than the first
horizontal distance (Dh1) towards the proximal end (201) of the outrigger beam, the
third and fourth vertical forces acting as a result of the outrigger beam being supported
by the outrigger support and the outrigger frame being supported by the outrigger
beam, respectively, and
-- a fourth torque acts on the outrigger beam (200) to balance the third torque, the
fourth torque being determined by interaction between the outrigger frame (100) and
the outrigger beam,
wherein the fourth torque is at least substantially determined by a third horizontal
force (Fh3) acting outwards at a sixth location (L6) on the outrigger beam (200) with
respect to the outrigger frame (100) and a fourth horizontal force (Fh4) acting inwards
at a seventh location (L7) on the outrigger beam with respect to the outrigger frame,
the seventh location being separated from the sixth location by a second vertical
distance (Dv2) in a downward direction,
optionally the fifth and sixth locations (L5, L6) being coinciding locations,
optionally the fourth and seventh locations (L4, L7) being coinciding locations.
5. The outrigger assembly according to any one of the preceding claims, wherein the outrigger
beam (200) is movable along the extension direction (E) to a second semi-extended
position (P3) in between the retracted position (P4) and the extended position (P1),
the outrigger assembly being configured such that, in the second semi-extended position
of the outrigger beam (200) and the supporting position of the outrigger support (300),
-- a fifth torque acts on the outrigger beam (200), the fifth torque being determined
by a fifth vertical force (Fv5) acting upwards at the first location (L1) on the distal
end (202) of the outrigger beam and a sixth vertical force (Fv6) acting downwards
at an eighth location (L8) on the outrigger beam, the eighth location being separated
from the first location by a third horizontal distance (Dh3) smaller than the first
horizontal distance (Dh1) towards the proximal end (201) of the outrigger beam, the
fifth and sixth vertical forces acting as a result of the outrigger beam being supported
by the outrigger support (300) and the outrigger frame (100) being supported by the
outrigger beam, respectively, and
-- a sixth torque acts on the outrigger beam (200) to balance the fifth torque, the
sixth torque being determined by interaction between the outrigger frame (100) and
the outrigger beam,
wherein the sixth torque is determined by a seventh vertical force (Fv7) acting downwards
at a ninth location (L9) on the outrigger beam (200) and an eighth vertical force
(Fv8) acting upwards at a tenth location (L10) on the outrigger beam, the tenth location
being separated from the ninth location by a fourth horizontal distance (Dh4) towards
the proximal end (201) of the outrigger beam,
optionally the second semi-extended position (P3) being in between the retracted position
(P4) and the first semi-extended position (P2), and the third horizontal distance
(Dh3) being smaller than the second horizontal distance (Dh2).
6. The outrigger assembly according to any one of the preceding claims, wherein the outrigger
frame (100) comprises a movable cam (400) that is movable into a first or a second
recess (211, 212), corresponding with the second and the third location (L2, L3) or
the fifth and sixth location (L5, L6), respectively, such as to allow the second vertical
force (Fv2) and the first horizontal force (Fh1) or to allow the fourth vertical force
(Fv4) and the third horizontal force (Fh3), respectively, to act on the outrigger
beam (200) in the extended position (P1) or the first semi-extended position (P2),
respectively, of the outrigger beam, optionally the movable cam (400) being a rotatable
cam, optionally the movable cam being operable by a cam actuator (450), optionally
an actuation cylinder, optionally a pneumatic, hydraulic, electrical or manual controlled
actuation cylinder, optionally the first or second recess being provided in an upper
surface of the outrigger beam (200).
7. The outrigger assembly according to any one of the preceding claims, wherein the outrigger
frame (100) comprises a movable cam (400) that is movable into a first recess (211)
corresponding with the second and the third location (L2, L3) such as to allow the
second vertical force (Fv2) and first horizontal force (Fh1) to act on the outrigger
beam in the extended position (P1) of the outrigger beam, and movable into a second
recesses (212) corresponding with the fifth and the sixth location (L5, L6) such as
to allow the fourth vertical force (Fv4) and the third horizontal force (Fh3) to act
on the outrigger beam (200) in the first semi-extended position (P2) of the outrigger
beam, optionally the movable cam (400) being a rotatable cam, optionally the movable
cam being operable by a cam actuator (450), optionally an actuation cylinder, optionally
a pneumatic, hydraulic, electrical or manual controlled actuation cylinder, optionally
the first and second recesses being provided in an upper surface of the outrigger
beam (200).
8. The outrigger assembly according to any one of the preceding claims, wherein the outrigger
assembly comprises a slider element (500) having first and second ends (501, 502),
the first end (501) cooperating with the outrigger beam (200) and the second end (502)
cooperating with the outrigger frame (100) to allow extending the outrigger beam from
the outrigger frame and to allow the second horizontal force (Fh2) to act on the outrigger
beam in the extended position (P1) of the outrigger beam, optionally the first end
of the slider element being slidably coupled to the outrigger beam to allow moving
of the slider element with respect to the outrigger beam.
9. The outrigger assembly according to the preceding claim, wherein the outrigger frame
(100) comprises a first stop (111), the second end (501) of the slider element is
slidable with respect to the outrigger frame upon extension of the outrigger beam
(200) from the outrigger frame, and the second end (502) cooperates with the first
stop to allow the second horizontal force (Fh2) to act on the outrigger beam in the
extended position (P1) of the outrigger beam.
10. The outrigger assembly according to the preceding claim as dependent on claim 4, wherein
the first end (501) of the slider element (500) cooperates with the outrigger beam
(200) and the second end (502) cooperates with the outrigger frame (100) to allow
extending the outrigger beam from the outrigger frame and to allow the fourth horizontal
force (Fh4) to act on the outrigger beam in the first semi-extended position (P2)
of the outrigger beam, the outrigger frame comprises a second stop (112), and the
second end (502) of the slider element cooperates with the second stop to allow the
fourth horizontal force (Fh4) to act on the outrigger beam in the first semi-extended
position (P2) of the outrigger beam.
11. The outrigger assembly according to the preceding claim, wherein the first end (501)
of the slider element (500) is slidably coupled to the outrigger beam (200) to allow
moving of the slider element with respect to the outrigger beam (200) in between a
first slider element position (SE1), in which the second end (502) of the slider element
is held by the outrigger beam, and a second slider element position (SE2), in which
the second end is allowed to slide with respect to the outrigger frame (100).
12. The outrigger assembly according to the preceding claim, wherein the outrigger assembly
comprises first and second outrigger beam actuators (150, 160) operable for moving
the outrigger beam (200) and the outrigger frame (100) with respect to one another,
and for moving the slider element (500) and the outrigger beam with respect to one
another.
13. The outrigger assembly according to the preceding claim, wherein the outrigger assembly
is configured such that the first outrigger beam actuator (150) is operable to allow
moving the outrigger beam (200) together with the second outrigger beam actuator (160)
and the slider element (500) with respect to the outrigger frame (100), and the second
actuator is operable to allow moving the outrigger beam with respect to the slider
element and the outrigger frame.
14. The outrigger assembly according to the preceding claim, wherein the first outrigger
beam actuator (150) comprises a first outrigger actuation cylinder having a first
cylinder part (151) and a first piston part (152) movable with respect to the first
cylinder part and coupled to the outrigger frame (100), the second outrigger beam
actuator (160) comprises a second outrigger actuation cylinder having a second cylinder
part (161) and a second piston part (162) movable with respect to the second cylinder
part and coupled to the outrigger beam (200), and the first and second cylinder parts
and the first end of the slider element fixedly coupled to one another.
15. A vehicle comprising an outrigger assembly (10) according to any one of the preceding
claims,
optionally the vehicle being a mobile crane.
1. Auslegervorrichtung (10) zum Abstützen eines Fahrzeugs auf einer Stützfläche (S),
wobei die Auslegervorrichtung Folgendes umfasst:
- einen Auslegerrahmen (100);
- einen Auslegerbalken (200),
wobei der Auslegerbalken (200) entlang einer horizontalen Ausfahrrichtung (E) in Bezug
auf den Auslegerrahmen (100) zwischen einer eingefahrenen Position (P4), in der sich
der Auslegerbalken innerhalb des Auslegerrahmens befindet, und einer ausgefahrenen
Position (P1), in der der Auslegerbalken von dem Auslegerrahmen ausgefahren ist, beweglich
ist, und
wobei der Auslegerbalken (200) in der ausgefahrenen Position des Auslegerbalkens ein
proximales Ende (201) und ein distales Ende (202) in Bezug auf den Auslegerrahmen
(100) aufweist; und
- eine Auslegerstütze (300), die mit dem distalen Ende des Auslegerbalkens (200) gekoppelt
ist, um die Abstützung der Auslegervorrichtung (10) auf der Stützfläche (S) in einer
Stützposition (SP) der Auslegerstütze zu ermöglichen,
wobei die Auslegervorrichtung so konfiguriert ist, dass in der ausgefahrenen Position
des Auslegerbalkens (200) und der Stützposition der Auslegerstütze (300)
- - ein erstes Drehmoment auf den Auslegerbalken (200) wirkt, wobei das erste Drehmoment
durch eine erste vertikale Kraft (Fv1) bestimmt wird, die an einer ersten Stelle (L1)
am distalen Ende (202) des Auslegerbalkens nach oben wirkt, und eine zweite vertikale
Kraft (Fv2), die an einer zweiten Stelle (L2) auf dem Auslegerbalken nach unten wirkt,
wobei die zweite Stelle von der ersten Stelle durch einen ersten horizontalen Abstand
(Dh1) in Richtung des proximalen Endes (201) des Auslegerbalkens getrennt ist, wobei
die ersten und zweiten vertikalen Kräfte dadurch wirken, dass der Auslegerbalken durch
die Auslegerstütze (300) gestützt wird bzw. der Auslegerrahmen (100) durch den Auslegerbalken
gestützt wird, und
- - ein zweites Drehmoment auf den Auslegerbalken (200) wirkt, um das erste Drehmoment
auszugleichen, wobei das zweite Drehmoment durch die Interaktion zwischen dem Auslegerrahmen
(100) und dem Auslegerbalken bestimmt wird,
dadurch gekennzeichnet, dass das zweite Drehmoment zumindest im Wesentlichen durch eine erste horizontale Kraft
(Fh1), die an einer dritten Stelle (L3) auf dem Auslegerbalken in Bezug auf den Auslegerrahmen
nach außen wirkt, und eine zweite horizontale Kraft (Fh2), die an einer vierten Stelle
(L4) auf dem Auslegerbalken in Bezug auf den Auslegerrahmen nach innen wirkt, bestimmt
wird, wobei die vierte Stelle von der dritten Stelle durch einen ersten vertikalen
Abstand (Dv1) in Abwärtsrichtung getrennt ist.
2. Auslegervorrichtung nach dem vorhergehenden Anspruch, wobei sich die zweite und dritte
Stelle (L2, L3) am proximalen Ende (201) des Auslegerbalkens (200) befinden, optional
am äußersten Ende des proximalen Endes.
3. Auslegervorrichtung nach einem der vorhergehenden Ansprüche,
wobei die zweite und die dritte Stelle (L2, L3) übereinstimmende Stellen sind.
4. Auslegervorrichtung nach einem der vorhergehenden Ansprüche, wobei der Auslegerbalken
(200) entlang der Ausfahrrichtung (E) in eine erste halb ausgefahrene Position (P2)
zwischen der eingefahrenen Position (P4) und der ausgefahrenen Position (P1) beweglich
ist,
wobei die Auslegervorrichtung so konfiguriert ist, dass in der ersten halb ausgefahrenen
Position des Auslegerbalkens (200) und der Stützposition der Auslegerstütze (300)
- - ein drittes Drehmoment auf den Auslegerbalken (200) wirkt, wobei das dritte Drehmoment
durch eine dritte vertikale Kraft (Fv3), die an der ersten Stelle (L1) am distalen
Ende (202) des Auslegerbalkens nach oben wirkt, und eine vierte vertikale Kraft (Fv4),
die an einer fünften Stelle (L5) auf dem Auslegerbalken nach unten wirkt, bestimmt
wird, wobei die fünfte Stelle von der ersten Stelle durch einen zweiten horizontalen
Abstand (Dh2) getrennt ist, der kleiner als der erste horizontale Abstand (Dh1) in
Richtung des proximalen Endes (201) des Auslegerbalkens ist, wobei die dritten und
vierten vertikalen Kräfte dadurch wirken, dass der Auslegerbalken durch die Auslegerstütze
gestützt wird bzw. der Auslegerrahmen durch den Auslegerbalken gestützt wird, und
- - ein viertes Drehmoment auf den Auslegerbalken (200) wirkt, um das dritte Drehmoment
auszugleichen, wobei das vierte Drehmoment durch die Interaktion zwischen dem Auslegerrahmen
(100) und dem Auslegerbalken bestimmt wird,
wobei das vierte Drehmoment zumindest im Wesentlichen durch eine dritte horizontale
Kraft (Fh3), die an einer sechsten Stelle (L6) auf dem Auslegerbalken (200) in Bezug
auf den Auslegerrahmen (100) nach außen wirkt, und eine vierte horizontale Kraft (Fh4),
die an einer siebten Stelle (L7) auf dem Auslegerbalken in Bezug auf den Auslegerrahmen
nach innen wirkt, bestimmt wird, wobei die siebte Stelle von der sechsten Stelle durch
einen zweiten vertikalen Abstand (Dv2) in Abwärtsrichtung getrennt ist,
optional die fünfte und die sechste Stelle (L5, L6) übereinstimmende Stellen sind,
optional die vierte und die siebte Stelle (L4, L7) übereinstimmende Stellen sind.
5. Auslegervorrichtung nach einem der vorhergehenden Ansprüche, wobei der Auslegerbalken
(200) entlang der Ausfahrrichtung (E) in eine zweite halb ausgefahrene Position (P3)
zwischen der eingefahrenen Position (P4) und der ausgefahrenen Position (P1) beweglich
ist,
wobei die Auslegervorrichtung so konfiguriert ist, dass in der zweiten halb ausgefahrenen
Position des Auslegerbalkens (200) und der Stützposition der Auslegerstütze (300)
- - ein fünftes Drehmoment auf den Auslegerbalken (200) wirkt, wobei das fünfte Drehmoment
durch eine fünfte vertikale Kraft (Fv5), die an der ersten Stelle (L1) am distalen
Ende (202) des Auslegerbalkens nach oben wirkt, und eine sechste vertikale Kraft (Fv6),
die an einer achten Stelle (L8) auf dem Auslegerbalken nach unten wirkt, bestimmt
wird, wobei die achte Stelle von der ersten Stelle durch einen dritten horizontalen
Abstand (Dh3) getrennt ist, der kleiner als der erste horizontale Abstand (Dh1) in
Richtung des proximalen Endes (201) des Auslegerbalkens ist, wobei die fünften und
sechsten vertikalen Kräfte dadurch wirken, dass der Auslegerbalken durch die Auslegerstütze
(300) und den Auslegerrahmen (100) gestützt wird, die jeweils vom Auslegerbalken getragen
werden, und
- - ein sechstes Drehmoment auf den Auslegerbalken (200) wirkt, um das fünfte Drehmoment
auszugleichen, wobei das sechste Drehmoment durch die Interaktion zwischen dem Auslegerrahmen
(100) und dem Auslegerbalken bestimmt wird,
wobei das sechste Drehmoment durch eine siebte vertikale Kraft (Fv7), die an einer
neunten Stelle (L9) auf dem Auslegerbalken (200) nach unten wirkt, und eine achte
vertikale Kraft (Fv8), die an einer zehnten Stelle (L10) auf dem Auslegerbalken nach
oben wirkt, bestimmt wird, wobei die zehnte Stelle von der neunten Stelle durch einen
vierten horizontalen Abstand (Dh4) in Richtung des proximalen Endes (201) des Auslegerbalkens
getrennt ist,
optional die zweite halb ausgefahrene Position (P3) zwischen der eingefahrenen Position
(P4) und der ersten halb ausgefahrenen Position (P2) liegt und der dritte horizontale
Abstand (Dh3) kleiner als der zweite horizontale Abstand (Dh2) ist.
6. Auslegervorrichtung nach einem der vorhergehenden Ansprüche, wobei der Auslegerrahmen
(100) einen beweglichen Nocken (400) umfasst, der in eine erste oder eine zweite Aussparung
(211, 212) bewegt werden kann, die der zweiten und dritten Stelle (L2, L3) bzw. der
fünften und sechsten Stelle (L5, L6) entspricht, um zu ermöglichen, dass die zweite
vertikale Kraft (Fv2) und die erste horizontale Kraft (Fh1) bzw. die vierte vertikale
Kraft (Fv4) und die dritte horizontale Kraft (Fh3) auf den Auslegerbalken (200) in
der ausgefahrenen Position (P1) oder der ersten halb ausgefahrenen Position (P2) des
Auslegerbalkens einwirken, wobei optional der bewegliche Nocken (400) ein drehbarer
Nocken ist, optional der bewegliche Nocken durch einen Nockenbetätiger (450), optional
einen Betätigungszylinder, optional einen pneumatischen, hydraulischen, elektrischen
oder manuell gesteuerten Betätigungszylinder betätigt werden kann, wobei optional
die erste oder zweite Aussparung in einer oberen Oberfläche des Auslegerbalkens (200)
vorgesehen ist.
7. Auslegervorrichtung nach einem der vorhergehenden Ansprüche, wobei der Auslegerrahmen
(100) einen beweglichen Nocken (400) umfasst, der in eine erste Aussparung (211) bewegt
werden kann, die der zweiten und der dritten Stelle (L2, L3) entspricht, so dass die
zweite vertikale Kraft (Fv2) und die erste horizontale Kraft (Fh1) in der ausgefahrenen
Position (P1) des Auslegerbalkens auf den Auslegerbalken wirken können, und in eine
zweite Aussparung (212) bewegt werden kann, die der fünften und sechsten Position
(L5, L6) entspricht, um zu ermöglichen, dass die vierte vertikale Kraft (Fv4) und
die dritte horizontale Kraft (Fh3) auf den Auslegerbalken (200) in der ersten halb
ausgefahrenen Position (P2) des Auslegerträgers wirken, wobei optional der bewegliche
Nocken (400) ein drehbarer Nocken ist, optional der bewegliche Nocken durch einen
Nockenbetätiger (450), optional einen Betätigungszylinder, optional einen pneumatischen,
hydraulischen, elektrischen oder manuell gesteuerten Betätigungszylinder betätigt
werden kann, wobei optional die erste und zweite Aussparung in einer oberen Oberfläche
des Auslegerbalkens (200) vorgesehen sind.
8. Auslegervorrichtung nach einem der vorhergehenden Ansprüche, wobei die Auslegervorrichtung
ein Gleitelement (500) mit ersten und zweiten Enden (501, 502) umfasst, wobei das
erste Ende (501) mit dem Auslegerbalken (200) zusammenwirkt und das zweite Ende (502)
mit dem Auslegerrahmen (100) zusammenwirkt, um das Ausfahren des Auslegerbalkens vom
Auslegerrahmen zu ermöglichen und um zu ermöglichen, dass die zweite horizontale Kraft
(Fh2) in der ausgefahrenen Position (P1) des Auslegerbalkens auf den Auslegerbalken
wirkt, wobei optional das erste Ende des Gleitelements verschiebbar mit dem Auslegerbalken
gekoppelt ist, um eine Bewegung des Gleitelements in Bezug auf den Auslegerbalken
zu ermöglichen.
9. Auslegervorrichtung nach dem vorhergehenden Anspruch, wobei der Auslegerrahmen (100)
einen ersten Anschlag (111) aufweist und das zweite Ende (501) des Gleitelements beim
Ausfahren des Auslegerbalkens (200) aus dem Auslegerrahmen in Bezug auf den Auslegerrahmen
verschiebbar ist, und das zweite Ende (502) mit dem ersten Anschlag zusammenwirkt,
um der zweiten horizontalen Kraft (Fh2) zu ermöglichen, in der ausgefahrenen Position
(P1) des Auslegerbalkens auf den Auslegerbalken zu wirken.
10. Auslegervorrichtung nach dem vorhergehenden Anspruch in Abhängigkeit von Anspruch
4, wobei das erste Ende (501) des Gleitelements (500) mit dem Auslegerbalken (200)
zusammenwirkt und das zweite Ende (502) mit dem Auslegerrahmen (100) zusammenwirkt,
um das Ausfahren des Auslegerbalkens aus dem Auslegerrahmen zu ermöglichen und die
Einwirkung der vierten horizontalen Kraft (Fh4) auf den Auslegerbalken in der ersten
halb ausgefahrenen Position (P2) des Auslegerbalkens zu ermöglichen, wobei der Auslegerrahmen
einen zweiten Anschlag (112) umfasst und das zweite Ende (502) des Gleitelements mit
dem zweiten Anschlag zusammenwirkt, um zu ermöglichen, dass die vierte horizontale
Kraft (Fh4) auf den Auslegerbalken in der ersten halb ausgefahrenen Position (P2)
des Auslegerbalkens wi rkt.
11. Auslegervorrichtung nach dem vorhergehenden Anspruch, wobei das erste Ende (501) des
Gleitelements (500) verschiebbar mit dem Auslegerbalken (200) verbunden ist, um eine
Bewegung des Gleitelements in Bezug auf den Auslegerbalken (200) zwischen einer ersten
Gleitelementposition (SE1), in der das zweite Ende (502) des Gleitelements durch den
Auslegerbalken gehalten wird, und einer zweiten Gleitelementposition (SE2), in der
das zweite Ende relativ zum Auslegerrahmen (100) gleiten kann, zu ermöglichen.
12. Auslegervorrichtung nach dem vorhergehenden Anspruch, wobei die Auslegervorrichtung
erste und zweite Auslegerbalken-Aktuatoren (150, 160) umfasst, die zum Bewegen des
Auslegerbalkens (200) und des Auslegerrahmens (100) relativ zueinander und zum Bewegen
des Gleitelements (500) und des Auslegerbalkens relativ zueinander betreibbar sind.
13. Auslegervorrichtung nach dem vorhergehenden Anspruch, wobei die Auslegervorrichtung
so konfiguriert ist, dass der erste Auslegerbalken-Aktuator (150) betreibbar ist,
um das Bewegen des Auslegerbalkens (200) zusammen mit dem zweiten Auslegerbalken-Aktuator
(160) und dem Gleitelement (500) in Bezug auf den Auslegerrahmen (100) zu ermöglichen
und der zweite Aktuator betreibbar ist, um das Bewegen des Auslegerbalkens in Bezug
auf das Gleitelement und den Auslegerrahmen zu ermöglichen.
14. Auslegervorrichtung nach dem vorhergehenden Anspruch, wobei der erste Auslegerbalken-Aktuator
(1150) einen ersten Ausleger-Betätigungszylinder mit einem ersten Zylinderteil (151)
und einem ersten Kolbenteil (152) umfasst, der in Bezug auf den ersten Zylinderteil
beweglich ist und mit dem Auslegerrahmen (100) gekoppelt ist, wobei der zweite Auslegerbalken-Aktuator
(160) einen zweiten Ausleger-Betätigungszylinder mit einem zweiten Zylinderteil (161)
und einem zweiten Kolbenteil (162) umfasst, der in Bezug auf den zweiten Zylinderteil
beweglich ist und mit dem Auslegerbalken (200) gekoppelt ist, und die ersten und zweiten
Zylinderteile und das erste Ende des Gleitelements fest miteinander gekoppelt sind.
15. Fahrzeug, das eine Auslegervorrichtung (10) nach einem der vorhergehenden Ansprüche
umfasst,
wobei optional das Fahrzeug ein mobiler Kran ist.
1. Ensemble stabilisateur (10) pour supporter un véhicule sur une surface de support
(S), l'ensemble stabilisateur comprenant
- un cadre stabilisateur (100) ;
- une poutre stabilisatrice (200),
la poutre stabilisatrice (200) étant mobile le long d'une direction d'extension horizontale
(E) par rapport au cadre stabilisateur (100) entre une position rétractée (P4), dans
laquelle la poutre stabilisatrice est située à l'intérieur du cadre stabilisateur,
et une position étendue (P1), dans laquelle la poutre stabilisatrice est étendue à
partir du cadre stabilisateur, et
la poutre stabilisatrice (200) ayant une extrémité proximale (201) et une extrémité
distale (202) par rapport au cadre stabilisateur (100) dans la position étendue de
la poutre stabilisatrice ; et
- un support stabilisateur (300) couplé à l'extrémité distale de la poutre stabilisatrice
(200) pour permettre de supporter l'ensemble stabilisateur (10) sur la surface de
support (S) dans une position de support (SP) du support stabilisateur,
l'ensemble stabilisateur étant configuré de sorte que, dans la position étendue de
la poutre stabilisatrice (200) et la position de support du support stabilisateur
(300),
-- un premier couple agit sur la poutre stabilisatrice (200), le premier couple étant
déterminé par une première force verticale (Fv1) agissant vers le haut à un premier
emplacement (L1) sur l'extrémité distale (202) de la poutre stabilisatrice et une
deuxième force verticale (Fv2) agissant vers le bas à un deuxième emplacement (L2)
sur la poutre stabilisatrice, le deuxième emplacement étant séparé du premier emplacement
par une première distance horizontale (Dh1) vers l'extrémité proximale (201) de la
poutre stabilisatrice, les première et deuxième forces verticales agissant en conséquence
de la poutre stabilisatrice étant supportée par le support stabilisateur (300) et
du cadre stabilisateur (100) étant supporté par la poutre stabilisatrice, respectivement,
et
-- un deuxième couple agit sur la poutre stabilisatrice (200) pour équilibrer le premier
couple, le deuxième couple étant déterminé par l'interaction entre le cadre stabilisateur
(100) et la poutre stabilisatrice,
caractérisé en ce que le deuxième couple est au moins sensiblement déterminé par une première force horizontale
(Fh1) agissant vers l'extérieur à un troisième emplacement (L3) sur la poutre stabilisatrice
par rapport au cadre stabilisateur et par une deuxième force horizontale (Fh2) agissant
vers l'intérieur à un quatrième emplacement (L4) sur la poutre stabilisatrice par
rapport au cadre stabilisateur, le quatrième emplacement étant séparé du troisième
emplacement par une première distance verticale (Dv1) dans une direction vers le bas.
2. Ensemble stabilisateur selon la revendication précédente, où les deuxième et troisième
emplacements (L2, L3) sont à l'extrémité proximale (201) de la poutre stabilisatrice
(200), facultativement à l'extrémité extrême de l'extrémité proximale.
3. Ensemble stabilisateur selon l'une quelconque des revendications précédentes,
où les deuxième et troisième emplacements (L2, L3) sont des emplacements coïncidents.
4. Ensemble stabilisateur selon l'une quelconque des revendications précédentes, où la
poutre stabilisatrice (200) est mobile le long de la direction d'extension (E) jusqu'à
une première position semi-étendue (P2) entre la position rétractée (P4) et la position
étendue (P1),
l'ensemble stabilisateur étant configuré de sorte que, dans la première position semi-étendue
de la poutre stabilisatrice (200) et la position de support du support stabilisateur
(300),
-- un troisième couple agit sur la poutre stabilisatrice (200), le troisième couple
étant déterminé par une troisième force verticale (Fv3) agissant vers le haut au premier
emplacement (L1) sur l'extrémité distale (202) de la poutre stabilisatrice et une
quatrième force verticale (Fv4) agissant vers le bas à un cinquième emplacement (L5)
sur la poutre stabilisatrice, le cinquième emplacement étant séparé du premier emplacement
par une deuxième distance horizontale (Dh2) inférieure à la première distance horizontale
(Dh1) vers l'extrémité proximale (201) de la poutre stabilisatrice, les troisième
et quatrième forces verticales agissant en conséquence de la poutre stabilisatrice
étant supportée par le support stabilisateur et du cadre stabilisateur étant supporté
par la poutre stabilisatrice, respectivement, et
-- un quatrième couple agit sur la poutre stabilisatrice (200) pour équilibrer le
troisième couple, le quatrième couple étant déterminé par l'interaction entre le cadre
stabilisateur (100) et la poutre stabilisatrice,
où le quatrième couple est au moins sensiblement déterminé par une troisième force
horizontale (Fh3) agissant vers l'extérieur à un sixième emplacement (L6) sur la poutre
stabilisatrice (200) par rapport au cadre stabilisateur (100) et une quatrième force
horizontale (Fh4) agissant vers l'intérieur à un septième emplacement (L7) sur la
poutre stabilisatrice par rapport au cadre stabilisateur, le septième emplacement
étant séparé du sixième emplacement par une deuxième distance verticale (Dv2) dans
une direction vers le bas,
facultativement les cinquième et sixième emplacements (L5, L6) étant des emplacements
coïncidents,
facultativement, les quatrième et septième emplacements (L4, L7) étant des emplacements
coïncidents.
5. Ensemble stabilisateur selon l'une quelconque des revendications précédentes, où la
poutre stabilisatrice (200) est mobile le long de la direction d'extension (E) jusqu'à
une deuxième position semi-étendue (P3) entre la position rétractée (P4) et la position
étendue (P1),
l'ensemble stabilisateur étant configuré de sorte que, dans la deuxième position semi-étendue
de la poutre stabilisatrice (200) et la position de support du support stabilisateur
(300),
-- un cinquième couple agit sur la poutre stabilisatrice (200), le cinquième couple
étant déterminé par une cinquième force verticale (Fv5) agissant vers le haut au premier
emplacement (L1) sur l'extrémité distale (202) de la poutre stabilisatrice et une
sixième force verticale (Fv6) agissant vers le bas à un huitième emplacement (L8)
sur la poutre stabilisatrice, le huitième emplacement étant séparé du premier emplacement
par une troisième distance horizontale (Dh3) inférieure à la première distance horizontale
(Dh1) vers l'extrémité proximale (201) de la poutre stabilisatrice, les cinquième
et sixième forces verticales agissant en conséquence de la poutre stabilisatrice étant
supportée par le support stabilisateur (300) et du cadre stabilisateur (100) étant
supporté par la poutre stabilisatrice, respectivement, et
-- un sixième couple agit sur la poutre stabilisatrice (200) pour équilibrer le cinquième
couple, le sixième couple étant déterminé par l'interaction entre le cadre stabilisateur
(100) et la poutre stabilisatrice,
où le sixième couple est déterminé par une septième force verticale (Fv7) agissant
vers le bas à un neuvième emplacement (L9) sur la poutre stabilisatrice (200) et une
huitième force verticale (Fv8) agissant vers le haut à un dixième emplacement (L10)
sur la poutre stabilisatrice, le dixième emplacement étant séparé du neuvième emplacement
par une quatrième distance horizontale (Dh4) vers l'extrémité proximale (201) de la
poutre stabilisatrice,
facultativement, la deuxième position semi-étendue (P3) étant située entre la position
rétractée (P4) et la première position semi-étendue (P2), et la troisième distance
horizontale (Dh3) étant inférieure à la deuxième distance horizontale (Dh2).
6. Ensemble stabilisateur selon l'une quelconque des revendications précédentes, où le
cadre stabilisateur (100) comprend une came mobile (400) qui est mobile dans un premier
ou un deuxième renfoncement (211, 212), correspondant au deuxième et au troisième
emplacement (L2, L3) ou au cinquième et au sixième emplacement (L5, L6), respectivement,
de manière à permettre à la deuxième force verticale (Fv2) et à la première force
horizontale (Fh1) ou à permettre à la quatrième force verticale (Fv4) et à la troisième
force horizontale (Fh3), respectivement, d'agir sur la poutre stabilisatrice (200)
dans la position étendue (P1) ou dans la première position semi-étendue (P2), respectivement,
de la poutre stabilisatrice, facultativement la came mobile (400) étant une came rotative,
facultativement la came mobile pouvant être opérable par un actionneur de came (450),
facultativement un cylindre d'actionnement, facultativement un cylindre d'actionnement
à commande pneumatique, hydraulique, électrique ou manuelle, facultativement le premier
ou le deuxième renfoncement étant prévu dans une surface supérieure de la poutre stabilisatrice
(200).
7. Ensemble stabilisateur selon l'une quelconque des revendications précédentes, où le
cadre stabilisateur (100) comprend une came mobile (400) qui est mobile dans un premier
renfoncement (211) correspondant au deuxième et au troisième emplacement (L2, L3)
de manière à permettre à la deuxième force verticale (Fv2) et à la première force
horizontale (Fh1) d'agir sur la poutre stabilisatrice dans la position étendue (P1)
de la poutre stabilisatrice, et est mobile dans un deuxième renfoncement (212) correspondant
au cinquième et au sixième emplacement (L5, L6) de manière à permettre à la quatrième
force verticale (Fv4) et à la troisième force horizontale (Fh3) d'agir sur la poutre
stabilisatrice (200) dans la première position semi-étendue (P2) de la poutre stabilisatrice,
facultativement la came mobile (400) étant une came rotative, facultativement la came
mobile étant opérable par un actionneur de came (450), facultativement un cylindre
d'actionnement, facultativement un cylindre d'actionnement à commande pneumatique,
hydraulique, électrique ou manuelle, facultativement les premier et deuxième renfoncements
étant prévus dans une surface supérieure de la poutre stabilisatrice (200).
8. Ensemble stabilisateur selon l'une quelconque des revendications précédentes,
où l'ensemble stabilisateur comprend un élément coulissant (500) ayant des première
et deuxième extrémités (501, 502), la première extrémité (501) coopérant avec la poutre
stabilisatrice (200) et la deuxième extrémité (502) coopérant avec le cadre stabilisateur
(100) pour permettre l'extension de la poutre stabilisatrice à partir du cadre stabilisateur
et pour permettre à la deuxième force horizontale (Fh2) d'agir sur la poutre stabilisatrice
dans la position étendue (P1) de la poutre stabilisatrice, facultativement la première
extrémité de l'élément coulissant étant couplée de manière coulissante à la poutre
stabilisatrice pour permettre le déplacement de l'élément coulissant par rapport à
la poutre stabilisatrice.
9. Ensemble stabilisateur selon la revendication précédente, où le cadre stabilisateur
(100) comprend un premier arrêt (111), la deuxième extrémité (501 ) de l'élément coulissant
est coulissante par rapport au cadre stabilisateur lors de l'extension de la poutre
stabilisatrice (200) du cadre stabilisateur, et la deuxième extrémité (502) coopère
avec le premier arrêt pour permettre à la deuxième force horizontale (Fh2) d'agir
sur la poutre stabilisatrice dans la position étendue (P1) de la poutre stabilisatrice.
10. Ensemble stabilisateur selon la revendication précédente comme dépendant de la revendication
4, où la première extrémité (501) de l'élément coulissant (500) coopère avec la poutre
stabilisatrice (200) et la deuxième extrémité (502) coopère avec le cadre stabilisateur
(100) pour permettre l'extension de la poutre stabilisatrice à partir du cadre stabilisateur
et pour permettre à la quatrième force horizontale (Fh4) d'agir sur la poutre stabilisatrice
dans la première position semi-étendue (P2) de la poutre stabilisatrice, le cadre
stabilisateur comprend un deuxième arrêt (112), et la deuxième extrémité (502) de
l'élément coulissant coopère avec le deuxième arrêt pour permettre à la quatrième
force horizontale (Fh4) d'agir sur la poutre stabilisatrice dans la première position
semi-étendue (P2) de la poutre stabilisatrice.
11. Ensemble stabilisateur selon la revendication précédente, où la première extrémité
(501) de l'élément coulissant (500) est couplée de manière coulissante à la poutre
stabilisatrice (200) pour permettre le déplacement de l'élément coulissant par rapport
à la poutre stabilisatrice (200) entre une première position d'élément coulissant
(SE1), dans laquelle la deuxième extrémité (502) de l'élément coulissant est maintenue
par la poutre stabilisatrice, et une deuxième position d'élément coulissant (SE2),
dans laquelle la deuxième extrémité est autorisée à coulisser par rapport au cadre
stabilisateur (100).
12. Ensemble stabilisateur selon la revendication précédente, où l'ensemble stabilisateur
comprend premier et deuxième actionneurs de poutre stabilisatrice (150, 160) opérables
pour déplacer la poutre stabilisatrice (200) et le cadre stabilisateur (100) l'un
par rapport à l'autre, et pour déplacer l'élément coulissant (500) et la poutre stabilisatrice
l'un par rapport à l'autre.
13. Ensemble stabilisateur selon la revendication précédente, où l'ensemble stabilisateur
est configuré de sorte que le premier actionneur de poutre stabilisatrice (150) est
opérable pour permettre de déplacer la poutre stabilisatrice (200) conjointement avec
le deuxième actionneur de poutre stabilisatrice (160) et l'élément coulissant (500)
par rapport au cadre stabilisateur (100), et le deuxième actionneur est opérable pour
permettre de déplacer la poutre stabilisatrice par rapport à l'élément coulissant
et au cadre stabilisateur.
14. Ensemble stabilisateur selon la revendication précédente, où le premier actionneur
de poutre stabilisatrice (1150) comprend un premier cylindre d'actionnement stabilisateur
ayant une première partie de cylindre (151) et une première partie de piston (152)
mobile par rapport à la première partie de cylindre et couplée au cadre stabilisateur
(100), le deuxième actionneur de poutre stabilisatrice (160) comprend un deuxième
cylindre d'actionnement stabilisateur ayant une deuxième partie de cylindre (161)
et une deuxième partie de piston (162) mobile par rapport à la deuxième partie de
cylindre et couplée à la poutre stabilisatrice (200), et les première et deuxième
parties de cylindre et la première extrémité de l'élément coulissant couplées de manière
fixe l'une à l'autre.
15. Véhicule comprenant un ensemble stabilisateur (10) selon l'une quelconque des revendications
précédentes,
facultativement, le véhicule étant une grue mobile.