TECHNICAL FIELD
[0001] The present disclosure relates to a technical field of flow control, in particular,
to a diaphragm pump.
BACKGROUND
[0002] A diaphragm pump can be configured for adjusting a flow rate of a fluid by a pressure
difference, so that the fluid can be suck into the diaphragm pump and then discharge.
The diaphragm pump can include a diaphragm and a pump core base, and a sealing chamber
can be formed between the diaphragm and the pump core base. When the diaphragm vibrates,
the pressure in the sealing chamber can be controlled to achieve controlling of the
flow rate of the fluid.
[0003] In the prior art, when the fluid in the sealing chamber discharge from a water outlet
passage of the pump core base, an end surface of the diaphragm toward the pump core
base can be flat, and a vibration of the diaphragm toward the pump core base can achieve
a one-time pushing of the fluid in the sealing chamber.
[0004] However, only one sealing chamber is formed between the diaphragm and the pump core
base. When the diaphragm pump is in operation, the pressure difference in the sealing
chamber is not large enough, which causes the overall pressure of the diaphragm pump
low and a self-priming force weak. Furthermore, a stability of the pressure difference
of the sealing chamber is poor, easily leading to the flow rate of the fluid unstable.
[0005] CN 208 749 519 U discloses a pump including a pump body. The pump body is provided with an inlet pipe
section and an outlet pipe section for connecting to an external water circuit. The
pump body is provided with a connecting projection, and the inlet pipe section and
the outlet pipe section are projecting outward relative to the connecting projection.
[0006] However,
CN 208 749 519 U fails to disclose the distinguishing features in the characterizing part of claim
1.
SUMMARY
[0007] The present disclosure provides a diaphragm pump, which can improve a pressure difference
of a chamber between the pump core base and the diaphragm and its stability thereof.
[0008] A diaphragm pump can include a pump core base, a pump core opposite to the pump core
base, and a diaphragm fixed to the pump core and configured for cooperating with the
pump core base. The pump core base can include a water inlet passage and a water outlet
passage. The pump core base further include an inlet check valve at an end of the
water inlet passage and an outlet check valve at a first end of the water outlet passage.
The pump core base further includes a groove at a second end of the water outlet passage
opposite to the first end. The diaphragm include a convex portion cooperated with
the groove which is configured to push fluid in the groove outward from the water
outlet passage. The convex portion extends into the groove.
[0009] Furthermore, the convex portion is a plunger toward the pump core base.
[0010] Furthermore, the diaphragm is configured to drive the convex portion to insert into
the groove until the convex portion is in clearance fit with the groove.
[0011] Furthermore, the pump core base includes a first sealing portion and the diaphragm
includes a second sealing portion. The first sealing portion cooperates with the second
sealing portion to make a sealing effect between the convex portion and the groove.
[0012] Furthermore, the first sealing portion is a sealing ring on an outer periphery of
the groove and the second sealing portion is a sealing block at an outer periphery
of the convex portion.
[0013] Furthermore, the sealing ring is convexly arranged outward to the diaphragm.
[0014] Furthermore, the water outlet passage is inclined, and the second end of the water
outlet passage is not completely covered by the convex portion when the convex portion
enters into the groove and the water outlet passage communicates with the groove.
[0015] Furthermore, the diaphragm cooperates with the pump core base to form a water chamber.
The diaphragm includes a bending portion away from the pump core base. And a cavity
is formed by the bending portion and communicates with the water chamber.
[0016] Furthermore, the diaphragm pump further include: a magnetic isolation tube; an excitation
coil sleeved on the magnetic isolation tube; a spring disposed in the magnetic isolation
tube and abutting against the pump core; and a pump body. The pump body and the magnetic
isolation tube are connected with each other, and both are configured to limit the
inlet check valve and the outlet check valve on the pump core base.
[0017] The diaphragm pump has the following advantages. The diaphragm includes the convex
portion cooperated with the groove at the second end of the water outlet passage,
which is configured to push fluid in the groove outward from the water outlet passage.
That is, through the structural of the convex portion, the diaphragm pump can work
to achieve a second pushing of the fluid. Thereby, the pressure of the outlet water
can be increased and the stability of the pressure difference can be improved during
the operation of the diaphragm pump.
BRIEF DESCRIPTION OF THE DRAWINGS
[0018]
FIG. 1 is a cross-sectional view of a diaphragm pump in an embodiment of the present
disclosure.
FIG. 2 is a cross-sectional view of a pump core base and a diaphragm in the diaphragm
pump of FIG. 1.
FIG. 3 is a cross-sectional view of a pump core base in the diaphragm pump of FIG.
1.
FIG. 4 is a perspective view of a diaphragm in the diaphragm pump of FIG. 1 from another
view angle.
Fig. 5 is a cross-sectional view of a diaphragm in the diaphragm pump of Fig. 1.
DETAILED DESCRIPTION
[0019] In the following, many embodiments of the present disclosure will be clearly and
completely described with reference to the drawings. Obviously, the described embodiments
are only a part of the embodiments of the present disclosure, but not all the embodiments.
Based on the embodiments of the present disclosure, all other embodiments obtained
by one in the art without creative efforts can be within the protection scope of the
present disclosure.
[0020] Unless defined otherwise, all technical terms used herein have the same meaning as
commonly understood by one in the art. The technical terms used herein in the description
is for the purpose of describing particular embodiments only and is not intended to
limit the protection scope. The words "or/and" as used herein includes any and all
combinations of one or more of the associated listed items.
[0021] Referring to FIG. 1 to FIG. 5, an embodiment provides a diaphragm pump including
a pump core base 10, a diaphragm 20, a pump core 30, a magnetic isolation tube 40,
an excitation coil 50, a spring 60 and a pump body 70. The pump core 30 can be located
opposite to the pump core base 10. The diaphragm 20 can be fixed to the pump core
30 and configured for cooperating with the pump core base 10. The excitation coil
50 can be sleeved on the magnetic isolation tube 40. The spring 60 can be configured
for providing a reset force for the pump core 30. The pump core 30 can perform a reciprocating
motion relative to the pump core base 10 under a function of a magnetic field formed
by the excitation coil 50 when the excitation coil 50 is energized and under the resetting
force of the spring 60. Therefore, the diaphragm pump can control a flow rate of a
fluid.
[0022] The pump core base 10 can include a water inlet passage 11 and a water outlet passage
12. The pump core base 10 can further include an inlet check valve 101 at an end of
the water inlet passage 11 and an outlet check valve 102 at a first end of the water
outlet passage 12, so that the water inlet passage 11 and the water outlet passage
12 in the pump core base 10 can be one-directional (i.e., unidirectional) communicated.
[0023] In one embodiment, the pump body 70 and the magnetic isolation tube 30 can be connected
and fixed in a snap-connected manner, in order to limit the inlet check valve 101
and the outlet check valve 102 on the pump core base 10. In this way, the inlet check
valve 101 and the outlet check valve 102 can be assembled on the pump core base 10.
[0024] The pump core base 10 can include a groove 13 at a second end of the water outlet
passage 12 opposite to the first end. The diaphragm 20 can include a convex portion
21, and the convex portion 21 can cooperate with the groove 13 to push the fluid in
the groove 13 outward from the water outlet passage 12. That is, the diaphragm pump
can include a water chamber 100 between the pump core base 10 and the diaphragm 20
and the groove 13 in the pump core base 10. When the diaphragm pump works, the diaphragm
20 will move toward the pump core base 10 and the diaphragm 20 will firstly push the
fluid in the water chamber 100. Then, the convex portion 21 on the diaphragm 20 will
further push the fluid in the groove 13 so as to improve the pressure of water.
[0025] Referring to FIG. 2, the convex portion 21 can extend into the groove 13. In this
embodiment, a portion of the diaphragm 20 that is connected to the pump core 30 is
away from the convex portion 21. When the pump core 30 drives the diaphragm 20 to
move toward the pump core base 10, the convex portion 21 will enter into the groove
13 of the pump core base 10 to achieve a lager pressure. That is, when the diaphragm
pump is in operation, the movement of the diaphragm 20 toward the pump core base 10
can be divided into two stages: the first stage is water in the water cavity 100 can
be pushed by the diaphragm 20; and the second stage is water in the groove 13 can
be further pushed by the convex portion 21.
[0026] The convex portion 21 can be a plunger formed by the diaphragm 20 and partially protruding
toward the pump core base 10. The diaphragm 20 can drive the plunger to insert into
the groove 13 and the fluid in the groove 13 will be pushed outward. Of course, it
should be noted that the convex portions 21 are not limited to the shape shown in
the figure. One in the art can design the convex portions 21 in a frustum or cylindrical
shape if required.
[0027] Furthermore, the convex portion 21 can be in clearance fit with an inner wall of
the groove 13 when the convex portion 21 is inserted into the groove 13. In this way,
the fluid in the groove 13 can be pushed outward, thereby further increasing the flow
rate of the fluid during the operation of the diaphragm pump.
[0028] In this embodiment, the pump core base 10 can include a first sealing portion 14,
and the diaphragm 20 can include a second sealing portion 22. The first sealing portion
14 can cooperate with the second sealing portion 22 to make a sealing effect between
the convex portion 21 and the groove 13. That is, when the convex portion 21 is pushed
into the groove 13, the fluid in the groove 13 can be completely discharged from the
water outlet passage 12, thereby avoiding reverse flows of water if the inlet check
valve 101 is not completely closed. As a result, it ensures the stability and the
pressure of the water outlet when the diaphragm pump is in operation.
[0029] In one embodiment, the first sealing portion 14 can be a sealing ring on an outer
periphery of the groove 13, and the second sealing portion 22 can be a sealing block
at an outer periphery of the convex portion 21. When the diaphragm 20 moves towards
the pump core base 10, the second sealing portion 22 can abut against the first sealing
portion 14 of the pump core base 10, so as to realize the sealing fit between the
first sealing portion 14 and the second sealing portion 22. It should be noted that
when the second sealing portion 22 of the diaphragm 20 abuts on the first sealing
portion 14 of the pump core base 10, the fluid in the water chamber 100 and the groove
13 has been discharged outward through the water outlet passage 12. Of course, the
first sealing portion 14 and the second sealing portion 22 are not limited to the
shape shown in the figure. The one in the art can design the shapes of the first sealing
portion 14 and the second sealing portion 22 as required, for example, the first sealing
portion 14 and the second sealing portion 22 can be exchanged.
[0030] The first sealing portion 14 can be protruded toward the diaphragm 20, so that the
second sealing portion 22 of the diaphragm 20 can cooperate with the first sealing
portion 14, realizing the sealing effect between the pump core base 10 and the diaphragm
20.
[0031] In this embodiment, the water outlet passage 12 can be in inclined shape. The second
end of the water outlet passage 12 is not completely covered by the convex portion
21 even when the convex portion 21 enters into the groove 13, so that the water outlet
passage 12 can communicate with the groove 13. When the diaphragm pump works, the
fluid can flow from the groove 13 to the water outlet passage 12.
[0032] In another embodiment, the diaphragm 20 can further include a bending portion 23
away from the pump core base 10, and a cavity can be formed by the bending portion
23 and communicates with the water chamber 100, so that water storage capacity of
the water chamber 100 can be expanded. When the pump core 30 drives the diaphragm
20 to move away from the pump core base 10, a vacuum degree of the water cavity 100
may be better, thus improving the self-priming force of the diaphragm pump during
operation. The bending portion 23 of the diaphragm 20 will facilitate the driving
of the diaphragm 20 by the pump core 30. In detail, it can reduce the force when the
pump core 30 drives the diaphragm 20, thereby reducing the power consumption of the
diaphragm pump during operation and extending the service life.
[0033] Compared with the diaphragm pump in the prior art, the diaphragm pump of the present
disclosure tested under the same conditions can have a higher drainage pressure improved
by at least 40%, a higher vacuum of the pump improved by at least 45%, and an enhanced
stability of the diaphragm pump improved by at least 10%.
[0034] The diaphragm pump has the following advantages. The diaphragm includes the convex
portion 21 cooperated with the groove 13 at the second end of the water outlet passage
12, which is configured to push fluid in the groove 13 outward from the water outlet
passage 12. That is, through the structural of the convex portion 21, the diaphragm
pump can work to achieve a second pushing of the fluid. Thereby, the pressure of outlet
water can be increased, self-priming force of the diaphragm pump can be enhanced at
the same time, and the stability of the pressure difference can be improved during
the operation of the diaphragm pump.
[0035] The technical features of the embodiments described above can be arbitrarily combined.
In order to simplify the description, all possible combinations of the technical features
in the above embodiments have not been described. However, as long as there is no
contradiction in the combination of these technical features, it should be considered
as the scope described in this specification.
[0036] The above-mentioned embodiment only expresses several implementation manners of the
present disclosure, and the description thereof is more specific and detailed, but
it cannot be understood as a limitation on the scope of the invention patent. It should
be noted that, for one in the art, without departing from the concept of the present
disclosure, several modifications and improvements can be made, which all belong to
the protection scope of the present disclosure. Therefore, the protection scope of
the invention patent shall be subject to the appended claims.
1. A diaphragm pump comprising a pump core base (10), a pump core (30) opposite to the
pump core base (10), and a diaphragm (20) fixed to the pump core (30) and configured
for cooperating with the pump core base (10),
wherein the pump core base (10) comprises a water inlet passage (11) and a water outlet
passage (12), wherein the pump core base (10) further comprises an inlet check valve
(101) at an end of the water inlet passage (11) and an outlet check valve (102) at
a first end of the water outlet passage (12),
characterized in that:
the pump core base (10) further comprises a groove (13) at a second end of the water
outlet passage (12) opposite to the first end, and
the diaphragm (20) comprises a convex portion (21) cooperated with the groove (13)
which is configured to push fluid in the groove (13) outward from the water outlet
passage (12), and the convex portion (21) extends into the groove (13).
2. The diaphragm pump of claim 1, wherein the convex portion (21) is a plunger toward
the pump core base (10).
3. The diaphragm pump of claim 1, wherein the diaphragm (20) is configured to drive the
convex portion (21) to insert into the groove (13) until the convex portion (21) is
in clearance fit with the groove (13).
4. The diaphragm pump of claim 1, wherein the pump core base (10) comprises a first sealing
portion (14), the diaphragm (20) comprises a second sealing portion (22), the first
sealing portion (14) cooperates with the second sealing portion (22) to make a sealing
effect between the convex portion (21) and the groove (13).
5. The diaphragm pump of claim 4, wherein the first sealing portion (14) is a sealing
ring on an outer periphery of the groove (13), and the second sealing portion (22)
is a sealing block at an outer periphery of the convex portion (21).
6. The diaphragm pump of claim 5, wherein the sealing ring is convexly arranged outward
to the diaphragm (20).
7. The diaphragm pump of claim 1, wherein the water outlet passage (12) is inclined,
and the second end of the water outlet passage (12) is not completely covered by the
convex portion (21), and the water outlet passage (12) communicates with the groove
(13).
8. The diaphragm pump of claim 1, wherein the diaphragm (20) cooperates with the pump
core base (10) to form a water chamber (100), the diaphragm (20) comprises a bending
portion (23) away from the pump core base (10), and a cavity is formed by the bending
portion (23) and communicates with the water chamber (100).
9. The diaphragm pump of claim 1, wherein the diaphragm pump further comprises:
a magnetic isolation tube (40);
an excitation coil (50) sleeved on the magnetic isolation tube (40);
a spring (60) disposed in the magnetic isolation tube (40) and abutting against the
pump core (30); and
a pump body (70),
wherein the pump body (70) and the magnetic isolation tube (40) are connected with
each other, and both are configured to limit the inlet check valve (101) and the outlet
check valve (102) on the pump core base (10).
1. Membranpumpe umfassend einen Pumpenkernsockel (10), eine Pumpenkern (30) gegenüber
dem Pumpenkernsockel (10) und eine Membran (20), die an dem Pumpenkern (30) fixiert
und zum Zusammenwirken mit dem Pumpenkernsockel (10) konfiguriert ist,
wobei der Pumpenkernsockel (10) einen Wassereinlasskanal (11) und einen Wasserauslasskanal
(12) umfasst, wobei der Pumpenkernsockel (10) ferner ein Einlassrückschlagventil (101)
an einem Ende des Wassereinlasskanals (11) und ein Auslassrückschlagventil (102) an
einem ersten Ende des Wasserauslasskanals (12) umfasst,
dadurch gekennzeichnet, dass:
der Pumpenkernsockel (10) ferner eine Nut (13) an einem zweiten Ende des Wasserauslasskanals
(12) gegenüber dem ersten Ende umfasst und
die Membran (20) einen konvexen Abschnitt (21) umfasst, der mit der Nut (13) zusammenwirkt
und dazu konfiguriert ist, Fluid in der Nut (13) aus dem Wasserauslasskanal (12) heraus
zu drücken, wobei sich der konvexe Abschnitt (21) in die Nut (13) erstreckt.
2. Membranpumpe nach Anspruch 1, wobei der konvexe Abschnitt (21) ein Kolben in Richtung
des Pumpenkernsockels (10) ist.
3. Membranpumpe nach Anspruch 1, wobei die Membran (20) dazu konfiguriert ist, den konvexen
Abschnitt (21) anzutreiben, um ihn in die Nut (13) zu treiben, bis der konvexe Abschnitt
(21) in Spielpassung mit der Nut (13) ist.
4. Membranpumpe nach Anspruch 1, wobei der Pumpenkernsockel (10) einen ersten Abdichtungsabschnitt
(14) umfasst, die Membran (20) einen zweiten Abdichtungsabschnitt (22) umfasst und
der erste Abdichtungsabschnitt (14) mit dem zweiten Abdichtungsabschnitt (22) zusammenwirkt,
um eine abdichtende Wirkung zwischen dem konvexen Abschnitt (21) und der Nut (13)
zu erzielen.
5. Membranpumpe nach Anspruch 4, wobei der erste Abdichtungsabschnitt (14) ein Dichtungsring
an einem Außenumfang der Nut (13) ist und der zweite Abdichtungsabschnitt (22) ein
Dichtungsblock an einem Außenumfang des konvexen Abschnitts (21) ist.
6. Membranpumpe nach Anspruch 5, wobei der Dichtungsring konvex außerhalb der Membran
(20) angeordnet ist.
7. Membranpumpe nach Anspruch 1, wobei der Wasserauslasskanal (12) geneigt ist und das
zweite Ende des Wasserauslasskanals (12) nicht vollständig durch den konvexen Abschnitt
(21) bedeckt ist und der Wasserauslasskanal (12) mit der Nut (13) in Verbindung steht.
8. Membranpumpe nach Anspruch 1, wobei die Membran (20) mit dem Pumpenkernsockel (10)
zusammenwirkt, um eine Wasserkammer (100) zu bilden, wobei die Membran (20) einen
Biegungsabschnitt (23) entfernt von dem Pumpenkernsockel (10) umfasst und durch den
Biegungsabschnitt (23) ein Hohlraum gebildet ist, der mit der Wasserkammer (100) in
Verbindung steht.
9. Membranpumpe nach Anspruch 1, wobei die Membranpumpe ferner umfasst:
eine magnetisch isolierte Röhre (40);
eine Erregungsspule (50), die auf die magnetisch isolierte Röhre (40) gesetzt ist;
eine Feder (60), die in der magnetisch isolierten Röhre (40) angeordnet ist und an
dem Pumpenkern (30) anliegt; und
einen Pumpenkörper (70),
wobei der Pumpenkörper (70) und die magnetisch isolierte Röhre (40) miteinander verbunden
sind und beide dazu konfiguriert sind, das Einlassrückschlagventil (101) und das Auslassrückschlagventil
(102) an dem Pumpenkernsockel (10) zu begrenzen.
1. Une pompe à membrane comprenant une base de coeur de pompe (10), un coeur de pompe
(30) opposé à la base de coeur de pompe (10), et une membrane (20) fixée au coeur
de pompe (30) et configurée pour coopérer avec la base de coeur de pompe (10),
dans laquelle la base de coeur de pompe (10) comprend un passage d'entrée d'eau (11)
et un passage de sortie d'eau (12), dans laquelle la base de coeur de pompe (10) comprend
en outre une soupape de retenue d'entrée (101) à une terminaison du passage d'entrée
d'eau (11) et une soupape de retenue de sortie (102) à la première terminaison du
passage de sortie d'eau (12),
caractérisée en ce que :
la base de coeur de pompe (10) comprend en outre une gorge (13) à la deuxième terminaison
du passage de sortie d'eau (12) opposée à la première terminaison, et
la membrane (20) comprend une partie convexe (21) coopérant avec la gorge (13) qui
est configurée pour pousser le fluide dans la gorge (13) vers l'extérieur depuis le
passage de sortie d'eau (12), et la partie convexe (21) se prolonge dans la gorge
(13).
2. Une pompe à membrane selon la revendication 1, dans laquelle la partie convexe (21)
est un piston vers la base de coeur de pompe (10).
3. Une pompe à membrane selon la revendication 1, dans laquelle la membrane (20) est
configurée pour entraîner l'insertion de la partie convexe (21) dans la gorge (13)
jusqu'à ce que la partie convexe (21) soit ajustée à la gorge (13).
4. Une pompe à membrane selon la revendication 1, dans laquelle la base de coeur de pompe
(10) comprend une première partie d'étanchéité (14), la membrane (20) comprend une
deuxième partie d'étanchéité (22), la première partie d'étanchéité (14) coopère avec
la deuxième partie d'étanchéité (22) afin de produire un effet d'étanchéité entre
la partie convexe (21) et la gorge (13).
5. Une pompe à membrane selon la revendication 4, dans laquelle la première partie d'étanchéité
(14) est une bague d'étanchéité sur la périphérie externe de la gorge (13), et la
deuxième partie d'étanchéité (22) est un bloc d'étanchéité à la périphérie externe
de la partie convexe (21).
6. Une pompe à membrane selon la revendication 5, dans laquelle la bague d'étanchéité
est agencée de façon convexe vers l'extérieur de la membrane (20).
7. Une pompe à membrane selon la revendication 1, dans laquelle le passage de sortie
d'eau (12) est incliné, et la deuxième terminaison du passage de sortie d'eau (12)
n'est pas complètement recouverte par la partie convexe (21), et le passage de sortie
d'eau (12) communique avec la gorge (13).
8. Une pompe à membrane selon la revendication 1, dans laquelle la membrane (20) coopère
avec la base de coeur de pompe (10) pour former une chambre d'eau (100), la membrane
(20) comprend une partie pliante (23) distale de la base de coeur de pompe (10), et
une cavité est formée par la partie pliante (23) et communique avec la chambre d'eau
(100).
9. Une pompe à membrane selon la revendication 1, dans laquelle la pompe à membrane comprend
en outre :
un tube d'isolation magnétique (40) ;
une bobine d'excitation (50) emmanchée sur le tube d'isolation magnétique (40) ;
un ressort (60) disposé dans le tube d'isolation magnétique (40) et venant en butée
contre le coeur de pompe (30) ; et
un corps de pompe (70),
dans lequel le corps de pompe (70) et le tube d'isolation magnétique (40) sont mutuellement
reliés, et tous deux sont configurés pour limiter la soupape de retenue d'entrée (101)
et la soupape de retenue de sortie (102) sur la base de coeur de pompe (10).