TECHNICAL FIELD
[0001] The present disclosure relates to a circuit protection device, and more particularly,
to a circuit protection device that is capable of being reduced in thickness and improved
in reliability.
BACKGROUND
[0002] In recent years, with the multifunctionality of portable electronic devices, for
example, smartphones, various frequency bands are being used. That is, a plurality
of functions using different frequency bands such as wireless LAN, Bluetooth, and
GPS in one smartphone have been adopted. Also, as electronic devices are highly integrated,
internal circuit density in a limited space increases, and thus, noise interference
necessarily occurs between the internal circuits. For example, a noise having a frequency
of 750 MHz deteriorates communication quality of smartphones, and noise having a frequency
of 1.5 GHz deteriorates quality of GPS.
[0003] A plurality of circuit protection devices for suppressing noises having various frequencies
of the portable electronic devices and noises between the internal circuits are being
used. For example, a condenser, a chip bead, a common mode filter, and the like, which
respectively remove noises having frequency bands different from each other, are being
used. Here, the common mode filter may have a structure in which two choke coils are
combined with each other to form one body and may allow signal current of a differential
mode to pass therethrough and remove only noise current of a common mode. That is,
the common mode filter may classify and remove the signal current of the differential
mode, which is AC current, and the noise current of the common mode.
[0004] Also, an ESD protection device (ESD: electrostatic discharge) for protecting an electronic
device from a high voltage such as ESD, which is applied to the electronic device
from the outside, is required. However, when the common mode noise filter and the
ESD protection device are separately mounted, areas occupied by the common mode noise
filter and the ESD protection device may increase. Thus, the common mode noise filter
and the ESD protection device are laminated in one chip to realize the circuit protection
device. Here, the common mode noise filter and the ESD protection device may be realized
on a nonmagnetic ceramic sheet. Also, a separation layer using a magnetic ceramic
sheet is disposed between the common mode noise filter and the ESD protection device,
and upper and lower cover layers using a magnetic sheet are respectively disposed
above and below the common mode noise filter and the ESD protection device. Thus,
the magnetic upper cover layer, the nonmagnetic common mode noise filter, the magnetic
separation layer, the nonmagnetic ESD protection device, and the magnetic lower cover
layer are laminated to form the circuit protection device. Here, each of the layers
may be formed by laminating a nonmagnetic sheet or magnetic sheet having a predetermined
thickness. Also, a surface layer provided as a glassy sheet is further formed on a
surface of each of the upper and lower magnetic cover layers.
[0005] As described above, since the five layers having magnetic properties different from
each other are alternately laminated, the circuit protection device increases in thickness.
Thus, there is a limitation in reducing the thickness of the circuit protection device
in accordance with the reduction in size and mounting area.
(PRIOR ART DOCUMENT)
[0006] Document
US 2011/007439 A1 describes a circuit protection device, comprising (i) a first magnetic layer in which
a plurality of magnetic sheets are laminated and of which at least a portion of one
surface is exposed; (ii) a second 5 magnetic layer in which a plurality of magnetic
sheets are laminated and of which at least a portion of one surface is exposed; (iii)
a nonmagnetic layer in which a plurality of nonmagnetic sheets are laminated and which
is disposed between the first and second magnetic layers, wherein a noise filter part
including a plurality of coil patterns is disposed in the nonmagnetic layer, and (iv)
an ESD protection part 10 comprising first and second internal electrodes disposed
on at least one of the first and second magnetic layer and an ESD protection member
disposed between the first and second internal electrodes. The documents
JP 2007 200923 A,
JP 2013 038207 A and
WO 2009/045008 A2 describe other circuit protection devices. A further prior art document is
Korean Patent Registration No. 10-0876206.
DISCLOSURE OF THE INVENTION
TECHNICAL PROBLEM
[0007] The present disclosure provides a circuit protection device that is capable of being
reduced in thickness.
[0008] The present disclosure provides a circuit protection device in which a nonmagnetic
layer is disposed between first and second magnetic layers.
[0009] The present disclosure provides a circuit protection device in which a noise filter
part is disposed on a nonmagnetic layer, and an ESD protection part is disposed on
a magnetic layer. Therefore, one object underlying the present invention is to provide
a circuit protection device that is capable of being reduced in thickness and improved
in reliability.
TECHNICAL SOLUTION
[0010] This object is achieved by the invention as defined by the independent claim. The
dependent claims detail advantageous embodiments of the invention. In accordance with
the invention, a circuit protection device is provided. The device comprises: a first
magnetic layer in which a first plurality of magnetic sheets are laminated and of
which at least a portion of one surface is exposed; a second magnetic layer in which
a second plurality of magnetic sheets are laminated and of which at least a portion
of one surface is exposed; and a nonmagnetic layer in which a plurality of nonmagnetic
sheets are laminated and which is disposed between the first and second magnetic layers,
wherein a noise filter part including a plurality of coil patterns is disposed in
the nonmagnetic layer; and an electrostatic discharge protection part comprising first
and second internal electrodes disposed on at least one of the first and second magnetic
layer and an electrostatic discharge protection member disposed between the first
and second internal electrodes, wherein at least one of a thickness and a width of
the electrostatic discharge protection member on at least one area of said electrostatic
discharge protection member is different from that on another area of the electrostatic
discharge protection member, wherein each of the first and second internal electrodes
is formed as a conductive layer wherein a porous oxide is formed on a surface thereof
as a porous insulation layer, and wherein the electrostatic discharge protection member
is formed of a porous insulation material, the porous insulation material is formed
of ferroelectric ceramic having a dielectric constant of about 50 to about 50,000,
and has a porous structure in which a plurality of pores, each of which has a size
of approximately 1 nm to approximately 5
µm, are formed..
[0011] At least one of the first and second magnetic layers and the nonmagnetic layer may
have a different thickness.
[0012] At least one of the plurality of magnetic sheets and the plurality of nonmagnetic
sheets may have a different thickness.
[0013] The noise filter part may include a plurality of coil patterns, a plurality of lead-out
electrodes, and a plurality of connection electrodes, which are disposed on the nonmagnetic
sheet selected from the plurality of nonmagnetic sheets, wherein the nonmagnetic sheets
are different from each other.
[0014] At least two coil patterns disposed on the non-magnetic sheets different from each
other may be connected to the connection electrode to constitute one inductor, and
the inductor may be provided in plurality.
[0015] The circuit protection device includes an electrostatic discharge protection (ESD
protection) part including first and second internal electrodes disposed on at least
one of the first and second magnetic layer and an ESD protection member disposed between
the first and second internal electrodes.
[0016] The first and second internal electrodes may be vertically spaced apart from each
other, and the ESD protection member may be disposed between the first and second
internal electrodes.
[0017] The first and second internal electrodes may be horizontally spaced apart from each
other, and the ESD protection member may be disposed between the first and second
internal electrodes.
[0018] The ESD protection member is formed by using a porous insulation material.
[0019] At least one of a thickness and a width of the ESD protection member on at least
one area is different from that of the ESD protection member on the other area.
[0020] A thickness of each of the first and second internal electrodes on at least one area
may be different from that of each of the first and second internal electrodes on
the other area.
[0021] A distance between the coil pattern and the internal electrode adjacent to the coil
pattern may be equal to or greater than that between the two coil patterns adj acent
to each other.
[0022] The ESD protection member may have a thickness equal to or greater than the distance
between the two coil patterns adjacent to each other.
[0023] The first internal electrode may overlap at least a portion of the lead-out electrode
of the noise filter part, and the second internal electrode may be disposed in a direction
perpendicular to that in which the first internal electrode is disposed.
[0024] The circuit protection device may further include at least one nonmagnetic sheet
which is disposed between at least two coil patterns and on which at least one capacitor
electrode is disposed.
[0025] The circuit protection device may further include a plurality of first external electrodes
connected to the lead-out electrode of the noise filter part and the first internal
electrode of the ESD protection part and a plurality of second external electrodes
connected to the second internal electrodes of the ESD protection part.
[0026] The circuit protection device may further include an insulation member disposed on
a surface of a laminate to expose at least a portion of the surface of the laminate.
[0027] The circuit protection device may further include a recess part defined in at least
a portion of the surface of the laminate.
[0028] The insulation member may be made of oxide having a crystal state or amorphous state.
[0029] The oxide may include at least one of Bi
2O
3, BO
2, B
2O
3, ZnO, Co
3O
4, SiO
2, Al
2O
3, MnO, H
2BO
3, H
2BO
3, Ca(CO
3)
2, Ca(NO
3)
2, and CaCO
3.
[0030] In accordance with another exemplary embodiment, a circuit protection device includes:
a laminate in which a plurality of insulation sheets are laminated; a noise filter
part disposed in the laminate; and oxide disposed on at least one surface of the laminate
to expose at least a portion of the surface of the laminate.
[0031] The oxide may include at least one of Bi
2O
3, BO
2, B
2O
3, ZnO, Co
3O
4, SiO
2, Al
2O
3, MnO, H
2BO
3, H
2BO
3, Ca(CO
3)
2, Ca(NO
3)
2, and CaCO
3, which are in a crystal state or non-crystal state.
ADVANTAGEOUS EFFECTS
[0032] In the circuit protection device in accordance with the embodiments, the nonmagnetic
layer formed by laminating the plurality of nonmagnetic sheets between the first and
second magnetic layers, which are formed by laminating the plurality of magnetic sheets,
may be provided, and the noise filter part including the plurality of coil patterns
is disposed in the nonmagnetic layer. Also, the ESD protection part for protecting
the circuit from the ESD voltage is disposed on at least one of the first and second
magnetic layers.
[0033] Thus, the ESD protection part is disposed in the magnetic layer, and the glassy layer
may not be disposed on the surface to reduce the thickness of the device. Therefore,
since the device is reduced in size, the circuit protection device may be mounted
to correspond to the electronic device that is reduced in mounting area and height.
[0034] Also, since the glassy layer is not disposed on the surface, and the ESD protection
part is disposed in the magnetic layer, the reliability may be improved. That is,
when the glassy layer is disposed on the surface, the glassy layer may absorb the
moisture to deteriorate the reliability of the device. However, the glassy layer may
not be disposed on the surface, and the ESD protection part may be disposed in the
magnetic layer to improve the moisture property, thereby improving the reliability.
BRIEF DESCRIPTION OF THE DRAWINGS
[0035] Exemplary embodiments can be understood in more detail from the following description
taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a coupling perspective of a circuit protection device in accordance with
an exemplary embodiment;
FIGS. 2 to 5 are cross-sectional views of the circuit protection device in accordance
with an exemplary embodiment;
FIG. 6 is an exploded perspective view of the circuit protection device in accordance
with an exemplary embodiment;
FIG. 7 is an exploded perspective view of a circuit protection device in accordance
with another exemplary embodiment;
FIGS. 8 and 9 are views illustrating various shapes of a capacitor electrode applied
to the circuit protection device in accordance with another exemplary embodiment;
FIG. 10 is an equivalent circuit diagram of the circuit protection device in accordance
with another exemplary embodiment;
FIGS. 11 and 12 are partial plan and cross-sectional views of a circuit protection
device in accordance with further another exemplary embodiment;
FIGS. 13 and 14 are coupling perspective and exploded views of an unclaimed circuit
protection device;
FIG. 15 is a schematic cross-sectional view illustrating a surface of a circuit protection
device in accordance with even another exemplary embodiment.
MODE FOR CARRYING OUT THE INVENTION
[0036] Hereinafter, specific embodiments will be described in detail with reference to the
accompanying drawings. The present invention may, however, be embodied in different
forms and should not be construed as limited to the embodiments set forth herein.
Rather, these embodiments are provided so that this disclosure will be thorough and
complete, and will fully convey the scope of the present, which is defined by the
claims, to those skilled in the art. In the figures, the dimensions of layers and
regions are exaggerated for clarity of illustration. Like reference numerals refer
to like elements throughout.
[0037] FIG. 1 is a coupling perspective of a circuit protection device in accordance with
an exemplary embodiment, FIGS. 2 to 5 are cross-sectional views of the circuit protection
device in accordance with an exemplary embodiment, and FIG. 6 is an exploded perspective
view of the circuit protection device in accordance with an exemplary embodiment.
[0038] The circuit protection device in accordance with the present invention includes first
and second magnetic layers in which a plurality of magnetic sheets are laminated and
a nonmagnetic layer in which a plurality of nonmagnetic sheets are laminated and which
is disposed between the first and second magnetic layers. Also, a noise filter part
for removing a noise is disposed in the nonmagnetic layer, and an ESD protection part
for protecting the device from an ESD voltage is disposed in at least one of the first
and second magnetic layers. For example, referring to FIGS. 1 to 6, a plurality of
sheets is laminated to constitute the circuit protection device including a cover
layer 1000, a noise filter part 2000, and an ESD protection part 3000. Here, the noise
filter part 2000 may include a common mode noise filter, and the cover layer 1000
may be disposed on an upper or lower portion of the noise filter part 2000. That is,
the cover layer 1000 may be disposed on the upper portion of the noise filter part
2000, and the ESD protection part 3000 may be disposed on the lower portion of the
noise filter part 2000. Alternatively, the ESD protection part 3000 may be disposed
on the upper portion of the noise filter part 2000, and the cover layer 1000 may be
disposed on the lower portion of the noise filter part 2000. Here, at least a portion
of a top surface of the cover layer 1000 and a bottom surface of the ESD protection
part 300 may be exposed. That is, oxide having a particle state or a molten state
may be dispersed on surfaces of the cover layer 1000 and the ESD protection part 3000.
Thus, at least a portion of the surface may be oxidized, and the oxide may not be
dispersed on at least a portion of the surface, and at least a portion of the surface
may not be dispersed and thus be exposed. Here, the oxide may be dispersed on a side
surface of a laminate 10 in which the cover layer 1000, the noise filter part 2000,
and the ESD protection part 3000 are laminated. As a result, in accordance with an
exemplary embodiment, the oxide having the particle state or the molten state may
be dispersed on the top and bottom surfaces and the side surface of the laminate 10.
Thus, a glassy layer is not disposed on the surface, and the oxide having the particle
state or the molted state is dispersed on at least a portion of the surface so that
at least a portion of the surface is exposed. Also, the circuit protection device
may further include first external electrodes 4100 (4110, 4120, 4130, and 4140) disposed
on first and second side surfaces, which face each other, of the laminate 10, in which
the cover layer 1000, the noise filter part 2000, and the ESD protection part 3000
are laminated, and second external electrodes 4200 (4210 and 4220) disposed n third
and fourth side surfaces which face each other and on which the first external electrode
4100 is not disposed. Here, since the glassy layer is not disposed on the surface,
and the oxide is disposed on at least a portion of the surface, the first and second
external electrodes 4100 and 4200 may be easily formed. Here, the first external electrodes
4100 may be connected to the noise filter part 2000 and the ESD protection part 3000,
and the second external electrodes 4200 may be connected to the ESD protection part
3000. Also, the plurality of sheets of each of the cover layer 1000 and the ESD protection
part 3000 include magnetic sheets, and the plurality of sheets of the noise filter
part 2000 includes nonmagnetic sheets. That is, the cover layer 1000 is provided as
a plurality of magnetic sheets, and the ESD protection part 3000 is disposed on the
plurality of magnetic sheets. The noise filter part 2000 is disposed on a plurality
of nonmagnetic sheets. In an unclaimed circuit protection device, a magnetic layer
may be disposed between two nonmagnetic layers, the noise filter part 2000 may be
disposed in the magnetic layer, and the ESD protection part 3000 may be disposed in
at least one of the nonmagnetic layers. Here, the magnetic sheet may be formed by
using, for example, NiZnCu or NiZn-based magnetic ceramic. For example, the NiZnCu-based
magnetic sheet may be formed by mixing Fe
2O
3, ZnO, NiO, and CuO. Here, Fe
2O
3, ZnO, NiO, and CuO may be mixed at, for example, a ratio of 5:2:2:1. Also, the nonmagnetic
sheet may be manufactured by using, for example, low temperature co-fired ceramic
(LTCC).
Cover Layer
[0039] The cover layer 1000 may be disposed on one surface of the noise filter part 2000.
For example, the cover layer 1000 may be disposed above the noise filter part 2000.
A plurality of sheets are laminated to form the cover layer 1000 having a predetermined
thickness. Here, a plurality of sheets, each of which has the same shape as each of
the sheets constituting the noise filter part 2000 and the ESD protection part 3000,
may be laminated to form the cover layer 1000. For example, a plurality of sheets,
each of which has an approximately rectangular plate shape with a predetermined thickness,
may be laminated to form the cover layer 1000. Here, each of the sheets constituting
the cover layer 1000 may have the same thickness as or equal to or less than that
of each of the sheets constituting the noise filter part 2000 and the ESD protection
part 3000. For example, each of the sheets constituting the cover layer 1000 may have
a thickness greater than that of each of the sheets constituting the noise filer part
2000 and the same thickness as that of each of the sheets constituting the ESD protection
part 3000. Also, the cover layer 1000 may have the same thickness as that of each
of the noise filter part 2000 and the ESD protection part 3000 or a thickness less
or greater than that of each of the noise filter part 2000 and the ESD protection
part 3000. For example, the cover layer 1000 may have the same thickness as that of
the noise filter 2000 by laminating the sheets having numbers less than those of sheets
of the noise filter part 2000. Also, the cover layer 1000 may have the same thickness
as that of the noise filter part 2000 by laminating the sheets having the same number
as that of sheets of the noise filter part 2000. Alternatively, the cover layer 1000
may have a thickness greater than that of the noise filter part 2000. Also, the cover
layer 1000 may have the same thickness as that of the ESD protection part 3000 by
laminating the sheets having the same number as that of sheets of the ESD protection
part 3000 or may have a thickness less or greater than that of the ESD protection
part 3000 by laminating the sheets having numbers less or greater than that of sheets
of the ESD protection part 3000.
Noise Filter Part
[0040] Referring to FIGS. 2 to 6, in the noise filter part 2000, a plurality of sheets 110
to 150 are laminated, and a lead-out electrode, a coil pattern, and a hole in which
a conductive material is filled may be selectively formed on or in the plurality of
sheets 110 to 150. That is, the noise filter part 2000 includes a plurality of sheets
110 to 150, each of which is made of a nonmagnetic material, a plurality of holes
351, 352, 361, and 362 which are selectively defined in the plurality of sheets 120
to 150 and in which a conductive material is filled, coil patterns 310, 320, 330,
and 340 disposed on the selected sheets 120 to 150, and lead-out electrodes 410, 420,
430, and 440 disposed on the selected sheets 120 to 150 and connected to the coil
patterns 310, 320, 330, and 340 to lead out. Here, the plurality of holes 351, 352,
353, 361, 362, 363 in which the conductive material is filled may form vertical connection
lines 350 and 360. That is, the plurality of holes 351, 352, and 353 may form the
vertical connection line 350, and the plurality of holes 361, 362, and 363 may form
the vertical connection line 360. The plurality of sheets 110 to 150 constituting
the noise filter part 2000 may have the same shape, for example, rectangular plate
shapes and the same thickness. Alternatively, at least one of the plurality of sheets
110 to 150 may have a different thickness. The configuration of the noise filter part
200 will be described below in more detail.
[0041] The sheet 110 may have an approximately rectangular plate shape with a predetermined
thickness. The sheet 110 may be disposed on the sheets 120, 130, 140, and 150 on which
the coil patterns 310, 320, 330, and 340 are disposed.
[0042] The hole 351 in which the conductive material is filled, the first coil pattern 310,
and the first lead-out electrode 410 are disposed on the sheet 120. The sheet 120
may have an approximately rectangular plate shape with a predetermined thickness.
That is, the sheet 120 may have a square shape or a rectangular shape. The hole 351
may be defined in a predetermined area that is spaced apart from an exact center of
the sheet 120 in one direction. The exact center may be defined as a point at which
two diagonal lines meet each other when virtual lines are diagonally drawn from four
edges. For example, the sheet 120 may have the rectangular shape, and the hole 351
may be defined at a point that is spaced a predetermined distance from the exact center
of the sheet 120 in one side direction, for example, a direction in which external
electrodes 5120 and 5140 are disposed. The conductive material may be filled in the
hole 351. For example, the hole 351 may be filled with paste of a metal material.
Also, the first coil pattern 310 may have a predetermined turn number by rotating
from the hole 351 in one direction. For example, the first coil pattern 310 may have
a turn number of 3 to 7.5. Here, the first coil pattern 310 may be disposed without
passing through a central area of the sheet 120. For example, the first coil pattern
310 may have a predetermined width and distance and a spiral shape that rotates outward
in a counterclockwise direction. Here, the first coil pattern 310 may have the same
line width and distance. Also, the first coil pattern 310 has an end connected to
the first lead-out electrode 410. The first lead-out electrode 410 has a predetermined
width and is exposed to one side of the sheet 120. For example, the first lead-out
electrode 410 extends in one side direction of the sheet 120, i.e., is disposed to
be exposed to one side of the sheet 120 in a direction opposite to that, in which
the hole 351 is defined, at the exact center of the sheet 120. Thus, the first lead-out
electrode 410 is connected to the first external electrode 4110. Here, the first lead-out
electrode 410 may have a width greater than that of the first coil pattern 310 and
thus increase a contact area with the first external electrode 4110 to prevent resistance
from increasing.
[0043] The two holes 352 and 361, the second coil pattern 320, and the second lead-out electrode
420 may be provided in or on the sheet 130. The sheet 130 may have the same shape
as that of each of the sheets 110 and 120. Here, the sheet 130 may have the same thickness
as that of each of the sheets 110 and 120 or have a thickness greater than that of
each of the sheets 110 and 120. When the sheet 130 has a thickness greater than that
of each of the sheets 110 and 120, the sheet 130 may have a thickness greater 1.1
times to 2 times than that of each of the sheets 110 and 120. The hole 352 may pass
through the sheet 130 and be defined in a central area of the sheet 130. Here, the
hole 352 may be defined at the same position as that of the hole 351 defined in the
sheet 120. Also, the hole 361 may be defined in a predetermined area that is spaced
apart from the exact center in the other direction at the same distance as that by
which the hole 352 is spaced apart from the exact center. That is, the two holes 352
and 361 may be defined at the same distance with respect to the exact center. The
conductive material may be filled in the holes 352 and 361. For example, the holes
351 and 361 may be filled with paste of a metal material. Also, the hole 352 may be
connected to the conductive material filled in the hole 351 of the sheet 120 by the
conductive material thereof. Also, the second coil pattern 320 may have a predetermined
turn number by rotating from the hole 361 in one direction. For example, the second
coil pattern 320 may have a turn number less than that of the first coil pattern 310,
for example, a turn number of 2.5 to 7. Here, the second coil pattern 320 may be disposed
without passing through the central area of the sheet 130 and the hole 352. For example,
the second coil pattern 320 may have a predetermined width and distance and a spiral
shape that rotates outward in a counterclockwise direction. That is, the second coil
pattern 320 may rotate in the same direction as the rotating direction of the first
coil pattern 310 disposed on the sheet 120. Also, the second coil pattern 320 has
an end connected to the second lead-out electrode 420. The second lead-out electrode
420 may have a width greater than that of the second coil pattern 320 and be exposed
to one side of the sheet 130. Here, the second lead-out electrode 420 may be spaced
a predetermined distance from the first lead-out electrode 410 disposed on the sheet
120 and be exposed in the same direction as that in which the first lead-out electrode
is exposed. The second lead-out electrode 420 may be connected to the first external
electrode 4120. That is, the lead-out electrodes 410 and 420 of the sheets 120 and
130 may be spaced apart from each other and exposed in the same direction and thus
respectively connected to the first external electrodes 4110 and 4120.
[0044] The hole 362, the third coil pattern 330, and the third lead-out electrode 430 may
be provided in or on the sheet 140. The sheet 140 may have an approximately rectangular
plate shape with a predetermined thickness. The hole 362 may pass through the sheet
140 and be defined in a central area of the sheet 140. Here, the hole 362 may be defined
at the same position as that of the hole 361 defined in the sheet 130. The conductive
material may be filled in the hole 362. For example, the hole 362 may be filled with
paste of a metal material and thus be connected to the hole 361 of the sheet 130.
Also, the third coil pattern 330 may have a predetermined turn number by rotating
from an area spaced a predetermined distance from the hole 362 in one direction. That
is, the third coil pattern 330 may be defined in a predetermined area that is spaced
apart from the exact center in the other direction at the same distance as that by
which the hole 362 is spaced apart from the exact center of the sheet 140. That is,
the third coil pattern 330 may be defined at the same position as that of the hole
defined in the sheet 130. Also, the third coil pattern 330 may have the same turn
number as that of the second coil pattern 320, for example, a turn number of 2.5 to
7. Here, the third coil pattern 330 may be disposed without passing through the central
area of the sheet 140 and the hole 362. For example, the third coil pattern 330 may
have a predetermined width and distance and a spiral shape that rotates outward in
a clockwise direction. That is, the third coil pattern 330 may rotate in a direction
opposite to the rotating direction of each of the coil patterns 310 and 320 disposed
on the sheet 120 and 130. Also, the third coil pattern 330 has an end connected to
the third lead-out electrode 430. The third lead-out electrode 430 has a predetermined
width and is exposed to one side of the sheet 140. Here, the third lead-out electrode
430 may be exposed to a surface opposite to that of the first lead-out electrode 410
disposed on the sheet 120. Also, the third lead-out electrode 430 may be disposed
in a line with the first lead-out electrode 410 disposed on the sheet 120. The third
lead-out electrode 430 may be connected to the first external electrode 4130.
[0045] The fourth coil pattern 340 and the fourth lead-out electrode 440 may be disposed
on the sheet 150. The sheet 150 may have an approximately rectangular plate shape
with a predetermined thickness. The fourth coil pattern 340 may have a predetermined
turn number by rotating form a predetermined area of the sheet 150 in one direction.
For example, the fourth coil pattern 340 may have the same turn number as that of
the first coil pattern 310 from an area thereof overlapping the area of the sheet
140 in which the hole 362 is defined. For example, the fourth coil pattern 340 may
have a turn number of 3 to 7.5. Here, the fourth coil pattern 340 may be disposed
without passing through a central area of the sheet 150. Also, the fourth coil pattern
340 may have a predetermined width and distance and a spiral shape that rotates outward
in a clockwise direction. The fourth coil pattern 340 has an end connected to the
fourth lead-out electrode 440. The fourth lead-out electrode 440 has a predetermined
width and is exposed to one side of the sheet 150. For example, the fourth lead-out
electrode 440 extends in one side direction of the sheet 150, is spaced a predetermined
distance from the third lead-out electrode 430 disposed on the sheet 140, and is disposed
in a line with the second lead-out electrode 420 disposed on the sheet 130. The fourth
lead-out electrode 440 may be connected to the first external electrode 4140.
[0046] Also, in the noise filter part 2000, the first coil pattern 310 of the sheet 120
is connected to the third coil pattern 330 of the sheet 140 by the vertical connection
electrode 350, and the second coil pattern 320 of the sheet 130 is connected to the
fourth coil pattern 340 of the sheet 150 by the vertical connection electrode 360.
That is, the first coil pattern 310 and the third coil pattern 330 may be connected
to each other, and the second coil pattern 320 and the fourth coil pattern 340 may
be connected to each other. Thus, in the circuit protection device in accordance with
an exemplary embodiment, the first coil pattern 310 and the third coil pattern 330
connected to the first coil pattern 310 constitute a first inductor, and the second
coil pattern 320 and the fourth coil pattern 340 connected to the second coil pattern
320 constitute a second inductor. Also, in the noise filter part 2000, the first and
fourth coil patterns 310 and 340 may have the same turn number, and the second and
third coil patterns 320 and 330 may have the same turn number. Here, each of the first
and fourth coil patterns 310 and 340 may have a turn number different from that of
each of the second and third coil patterns 320 and 330. For example, each of the first
and fourth coil patterns 310 and 340 may have a turn number greater than that of each
of the second and third coil patterns 320 and 330. That is, one of the two coil patterns
constituting the first inductor and one of the two patterns constituting the second
inductor may have the same turn number and may have turn numbers greater than those
of other coil patterns constituting the first and second inductors. Here, other coil
patterns constituting the first and second inductors may have the same turn number.
For example, each of the first and fourth coil patterns 310 and 340 may have a turn
number of 3 to 7.5, and each of the second and third coil patterns 320 and 330 may
have a turn number of 2.5 to 7. Particularly, each of the first and fourth coil patterns
310 and 340 may have a turn number of 3, 4.5, 6.5, or 7.5, and each of the second
and third coil patterns 320 and 330 may have a turn number of 2.5, 4, 6 or 7. However,
since the first and third coil patterns 310 and 330 are connected to each other to
constitute the first inductor, and the second and fourth coil patterns 320 and 340
are connected to each other to constitute the second inductor, the total coil patterns
of the first and second inductors may have the same turn number. Also, the first to
fourth coil patterns 310, 320, 330, and 340 may have lengths different from each other.
That is, although the coil patterns have the same turn number, the coil patterns may
have lengths different from each other.
[0047] In the circuit protection device in accordance with an exemplary embodiment, the
first coil pattern 310 and the third coil pattern 330 of the noise filter part 2000
may be connected to each other to constitute the first inductor, and the second coil
pattern 320 and the fourth coil pattern 340 may be connected to each other to constitute
the second inductor. That is, odd-numbered coil patterns may be connected to each
other, and even-numbered coil patterns may be connected to each other. However, the
first coil pattern 310 and the fourth coil pattern 340 may be connected to each other
to constitute the first inductor, and the second coil pattern 320 and the third coil
pattern 330 may be connected to each other to constitute the second inductor. That
is, the outer coil patterns may be connected to each other in a vertical direction,
and the inner coil patterns may be connected to each other in the vertical direction.
Here, the first and third coil patterns 310 and 330 may have the same turn number,
the second and fourth coil patterns 320 and 340 may have he same turn number, and
each of the first and third coil patterns 310 and 330 may have a turn number different
from that of each of the second and fourth coil patterns 320 and 340.
[0048] Also, although the four coil patterns are provided, and the coil patterns are connected
to each other by two to constitute the inductors in accordance with an exemplary embodiment,
four or more coil patterns may be provided, and the coil patterns may be connected
to each other by three or more to realize the inductors. Alternatively, the plurality
of coil pattern may be provided, and the coil patterns may be connected to each other
by two to realize at least three inductors. Also, the plurality of inductors may have
the same inductance, or at least one inductor may have a different inductance. To
allow the inductors to have inductances different from each other, the coil patterns
may have turn numbers different from each other.
ESD Protection Part
[0049] The ESD protection part 3000 is formed by laminating a plurality of sheets 160, 170,
and 180 on which the internal electrodes 510 and 520 and an ESD protection member
530 are selectively disposed. Here, the sheets 160, 170, and 180 may have the same
thickness, or at least one sheet may have a different thickness.
[0050] The sheet 160 may have the same shape as that of each of the sheets 110 to 150 of
the noise filter part 2000, i.e., an approximately rectangular plate shape. Here,
the sheet 160 may have the same thickness as that of each of the sheets 110 to 150
of the noise filter part or have a different thickness. For example, the sheet 160
may have a thickness greater than that of each of the sheets 110 to 150 of the noise
filter part 2000. Thus, a distance between the first internal electrode 510 disposed
on the sheet 170 and the fourth coil pattern 340 disposed on the sheet 150 may be
greater than that between the noise filter part 2000 and each of the coil patterns
310, 320, 330, and 340.
[0051] The sheet 170 may have the same shape as that of the sheet 160 and may have a thickness
greater than that of each of the sheets 110 to 150 of the noise filter part 2000.
A plurality of first internal electrodes 510 (511, 512, 513, and 514) may be disposed
on a top surface of the sheet 170. The plurality of first internal electrodes 510
may be disposed at the same position as that of the lead-out electrode 400 of the
noise filter part 2000. That is, a first-1 internal electrode 511 may overlap the
first lead-out electrode 410, a first-2 internal electrode 512 may overlap the second
lead-out electrode 420, a first-3 internal electrode may overlap the third lead-out
electrode 430, and a first-4 internal electrode 514 may overlap the fourth lead-out
electrode 440. Thus, the first internal electrode 510 is connected to the first external
electrode 4100 together with the lead-out electrode 400 of the noise filter part 2000.
Also, a plurality of ESD protection members 530 (531, 532, 533, and 534) may be disposed
on the sheet 170. The plurality of ESD protection members 530 may be disposed on ends
of the plurality of first internal electrodes 510, respectively. That is, a hole passing
through the sheet 170 may be defined in each of ends of the plurality of first internal
electrodes 510. An ESD protection material may be filled into or applied to each of
the holes to form the ESD protection members 530. For example, each of the ESD protection
members 530 may be formed by applying the ESD protection material to a side surface
of the hole defined in the sheet 170, or the ESD protection material may be applied
to or filled into at least a portion of the hole to form each of the ESD protection
members 530. In an unclaimed embodiment, the ESD protection material may be made of
at least one conductive material selected from RuO
2, Pt, Pd, Ag, Au, Ni, Cr, W, and the like. To form the ESD protection member 530 by
using the conductive material, the conductive material may be mixed with an organic
material such as polyvinyl alcohol (PVA) or polyvinyl butyral (PVB), and then, the
mixture may be applied to or filled into the hole to remove the organic material through
a firing process. Here, a plurality of pores may be defined in the ESD protection
member 530. For example, the plurality of pores may be defined in an area from which
the organic material is volatilized and removed. Also, the ESD protection material
may be formed by further mixing a barista material such as ZnO or an insulation ceramic
material such as Al
2O
3 with the above-described mixed material. Alternatively, various materials in addition
to the above-described materials may be used as the ESD protection material. For example,
the ESD protection material may use at least one of a porous insulation material and
a void. That is, the porous insulation material may be filled into or applied to the
hole, and the void may be formed in the hole. Also, a mixed material of the porous
insulation material and the conductive material may be filled into or applied to the
hole. Also, the porous insulation material, the conductive material, and the void
may be formed to form layers within the hole. A porous insulation layer is disposed
between the conductive layers, and the void may be defined between the insulation
layers. Here, the void may be formed by connecting the plurality of pores in the insulation
layer to each other. According to the invention, ferroelectric ceramic having a dielectric
constant of 50 to 50,000 is used as the porous insulation material. For example, the
insulation ceramic may be formed by using a mixture containing at least one of dielectric
material powder such as MLCC, ZrO, ZnO, BaTiO
3, Nd
2O
5, BaCO
3, TiO
2, Nd, Bi, Zn, and Al
2O
3. The porous insulation material has a porous structure in which a plurality of pores,
each of which has a size of approximately 1 nm to approximately 5
µm, are formed to have porosity of 30% to 80%. Here, the shortest distance between
the pores may be approximately 1 nm to approximately 5
µm. Also, in the unclaimed embodiment, the conductive material used as the ESD protection
material may be formed by using conductive ceramic. The conductive ceramic may use
a mixture containing at least one of La, Ni, Co, Cu, Zn, Ru, Ag, Pd, Pt, W, Fe, and
Bi.
[0052] The second internal electrode 520 extending to two sides of the sheet 180, which
are opposite to each other, and exposed to the two sides is disposed on a top surface
of the sheet 180. That is, the second internal electrode 520 may be disposed in a
direction perpendicular to the direction in which the first internal electrode 510
is disposed. Also, the second internal electrode 520 has an expansion part on an area
thereof, which at least partially overlaps the ESD protection member 530. That is,
the second internal electrode 520 has a first width. Also, the second internal electrode
520 has an expansion part having a second width greater than the first width on an
area thereof overlapping the ESD protection member 530, i.e., a portion thereof connected
to the ESD protection member 530. The second internal electrode 520 is connected to
each of the second external electrodes 4200 (4210 and 4220) disposed on two side surfaces
of the laminate 10, which are opposite to each other. Also, the second internal electrode
520 has a predetermined area connected to the ESD protection member 530 disposed on
the sheet 170. For this, the area connected to the ESD protection member 530 may have
a width greater than that of the other area.
[0053] According to the invention, the first and second internal electrodes 510 and 520
of the ESD protection part 3000 may be made of a metal or metal alloy on which porous
oxide is formed on a surface thereof. For example, the first and second internal electrodes
510 and 520 may be made of the metal or metal alloy having the porous oxide on the
surface thereof. That is, according to the invention, each of the first and second
internal electrodes 510 and 520 include a conductive layer and a porous insulation
layer disposed on at least one surface of the conductive layer. Here, the porous insulation
layer may be disposed on at least one surface of each of the first and second internal
electrodes 510 and 520. That is, the porous insulation layer may be disposed on only
one of one surface that does not contact the ESD protection member 530 and the other
surface contacting the ESD protection member 530 or be disposed on all of one surface
that does not contact the ESD protection member 530 and the other surface contacting
the ESD protection member 530. Also, the porous insulation layer may be disposed on
an entire surface of at least one surface of the conductive layer or only at lest
a portion of the at least one surface of the conductive layer. Also, at least one
region of the porous insulation layer may be moved, or the porous insulation layer
may have a thin thickness. That is, the porous insulation layer may not be disposed
on at least one area of the conductive layer, or at lest one region of the conductive
layer may have a thickness less or greater than that of the other region. Each of
the first and second internal electrodes 510 and 530 may be made of Al. This is done
because Al is inexpensive when compared to other metals and has conductivity similar
to that of each of other metals. Also, Al
2O
3 may be formed on a surface of the Al during the firing, and the inside of the Al
may be maintained as it is. That is, when the Al is formed on the sheets 170 and 180,
the Al may contact air. The surface of the Al may be oxidized during the firing process
to form Al
2O
3, and the inside of the Al may be maintained as it is. Thus, the Al coated with Al
2O
3 that is a thin porous insulation layer may be formed on the surface of each of the
internal electrodes 510 and 520. Alternatively, various metals may be used to form
the insulation layer, i.e., the porous insulation layer, on the surface of the discharge
electrode 310 in addition to Al. Thus, when the porous insulation layer is disposed
on the surface of each of the first and second internal electrodes 510 and 520, the
ESD voltage may be more smoothly discharged. That is, when the ESD protection member
530 includes the porous insulation material, the discharge may be performed through
the fine pores. When the porous insulation layer is disposed on the surface of each
of the first and second internal electrodes 510 and 520, the number of fine pores
in the ESD protection member 530 may further increase to improve discharge efficiency.
Also, at least a region of each of the first and second internal electrodes 510 and
520 may be removed or have a thickness different from that of the other region thereof.
Although each of the first and second internal electrodes 510 and 520 is partially
removed or has a thin thickness, since each of the first and second internal electrodes
510 and 520 is generally connected overall on a plane without being disconnected,
electrical properties thereof may not be deteriorated.
External Electrode
[0054] The first external electrode 4100 may be disposed on each of a first side surface
of the laminate 10 and a second side surface opposite to the first side surface. Alternatively,
two first external electrodes 4100 may be disposed on each of the first and second
side surfaces. The first external electrode 4100 may be connected to each of the lead-out
electrode 400 of the noise filter part 2000 and the first internal electrode 510 of
the ESD protection part 3000. That is, a first-1 external electrode 4110 is connected
to the first lead-out electrode 410 and the first-1 internal electrode 511, a first-2
external electrode 4120 is connected to the second lead-out electrode 420 and the
first-2 internal electrode 512, a first-3 external electrode 4130 is connected to
the third lead-out electrode and the first-3 internal electrode 513, and a first-4
external electrode 4140 is connected to the fourth lead-out electrode 440 and the
first-4 internal electrode 514. Also, each of the first external electrodes 4000 may
be connected between an input terminal and an output terminal. For example, the first-1
and first-2 external electrodes 4110 and 4120 disposed on one side surface of the
circuit protection device may be connected to the signal input terminal, and the first-3
and first-4 disposed on the other side surface corresponding to the one side surface
may be connected to the output terminal, for example, a system.
[0055] The second external electrode 4200 may be disposed on each of third and fourth side
surfaces facing each other of the laminate 10, on which the first external electrode
4100 is not disposed. The second external electrode 4200 may be connected to the second
internal electrode 520 of the ESD protection part 3000. That is, a second-1 and second-2
external electrodes 4210 and 4220 may be respectively disposed on the third and fourth
side surfaces of the laminate 10 and connected to the second internal electrode 520.
Also, the second external electrode 4200 may be connected to a ground terminal. Thus,
the ESD voltage may be bypassed to the ground terminal.
[0056] The first and second external electrodes 4100 and 4200 may be provided as at least
one layer. Each of the second external electrodes 4100 and 4200 may be made of a metal
layer such as Ag, and at least one plating layer may be disposed on the metal layer.
For example, each of the first and second external electrodes 4100 and 4200 may be
formed by laminating a cupper layer, an Ni-plated layer, and an Sn- or Sn/Ag-plated
layer. Also, each of the first and second external electrodes 4100 and 4200 may be
formed by mixing, for example, multicomponent glass frit using Bi
2O
3 or SiO
2 of 0.5% to 20% as a main component with metal powder. Here, the mixture of the glass
frit and the metal powder may be prepared in the form of paste and applied to two
surfaces facing each other of the laminate 10. As described above, since the glass
frit is contained in the first and second external electrodes 4100 and 4200, adhesion
force between the first and second external electrodes 4100 and 4200 and the laminate
10 may be improved, and contact reaction between the lead-out electrode 400 and the
first and second external electrodes 510 and 520 may be improved. Also, after the
conductive paste containing the glass is applied, at least one plating layer may be
disposed to form the first and second external electrodes 4100 and 4200. That is,
the metal layer containing the glass may be provided, and the at least one plating
layer may be disposed on the metal layer to form the first and second external electrodes
4100 and 4200. For example, in the first and second external electrodes 4100 and 4200,
after the layer containing the glass frit and at least one of Ag and Cu is formed,
electroplating or electroless plating may be performed to successively form the Ni-plated
layer and the Sn-plated layer. Here, the Sn-plated layer may have a thickness equal
to or greater than that of the Ni-plated layer. Each of the first and second external
electrodes 4100 and 4200 may have a thickness of 2
µm to 100
µm. Here, the Ni-plated layer may have a thickness of 1
µm to 10
µm, and the Sn- or Sn/Ag-plated layer may have a thickness of 2
µm to 10
µm.
[0057] The circuit protection device in accordance with an exemplary embodiment includes
first and second magnetic layers in which a plurality of magnetic sheets are laminated
and a nonmagnetic layer in which a plurality of nonmagnetic sheets are laminated and
which is disposed between the first and second magnetic layers. Also, the noise filter
part 2000 is disposed on the nonmagnetic layer, and the ESD protection part 3000 is
disposed on at least one of the first and second magnetic layers. Also, a glassy surface
layer may not be formed on the cover layer 1000 and the ESD protection part 3000,
i.e., the first and second magnetic layers. Thus, the circuit protection device may
be reduced in thickness and thus mounted to correspond to an electronic device that
is reduced in size and mounting height.
[0058] FIG. 7 is an exploded perspective view of a circuit protection device in accordance
with another exemplary embodiment.
[0059] Referring to FIG. 7, the circuit protection device in accordance with another exemplary
embodiment may include a cover layer 1000, a noise filter part 2000, and an ESD protection
part 3000, which are successively disposed downward. Also, a capacitor electrode 610
may be disposed in the noise filter part 2000. That is, a sheet 190 of the capacitor
electrode 610 is disposed may be disposed between a sheet 130 on which a second coil
pattern of the noise filter part 2000 is disposed and a sheet 190 on which the capacitor
electrode 610 is disposed. Since the noise filter part 200 and the ESD protection
part 3000 in accordance with another exemplary embodiment are the same as those in
accordance with the foregoing embodiment, their detailed descriptions will be omitted,
and the capacitor 600 will be mainly described.
[0060] Two holes 353 and 363, a capacitor electrode 610, and a lead-out electrode 620 are
disposed on the sheet 190. The holes 353 and 363 may be spaced apart from each other
in one direction and the other direction, which face each other, from an exact center
of the sheet 190. Here, the hole 353 may be defined in the same position as that of
the hole 352 of the sheet 130, and the hole 363 may be defined in the same position
as that of the hole 361 of the sheet 130. A conductive material may be filled in the
holes 353 and 363. For example, the holes 353 and 363 may be filled with paste of
a metal material. The holes 353 and 363 are connected to the conductive materials
filled into the holes 352 and 361 of the sheet 130, respectively. Thus, the holes
353 and 363 may be portions of vertical connection electrodes 350 and 360, respectively.
The capacitor electrode 610 may be spaced apart from the holes 353 and 363 and defined
with a predetermined area in at least one area of the sheet 190. An area of the capacitor
electrode 610 and an area of the sheet 190 on which the capacitor electrode is not
disposed may be provided at a ratio of 1:100 to 100:1. That is, the capacitor electrode
610 may have an area of 1% on the sheet 190 and also be disposed on an entire top
surface of the sheet 190 so that the capacitor electrode 610 does not contact the
holes 353 and 363. Also, the capacitor electrode 610 may have various shape such as
a square shape, a polygonal shape (including a shape having a rounded edge), a circular
shape, an oval shape, a spiral shape, and a meander shape. Particularly, the capacitor
electrode 610 may have the same shape as that of each of the coil patterns 310, 320,
330, and 340. Capacitors may be respectively disposed between the sheet 190 and the
sheet 130 and between the sheet 190 and the sheet 140 by the capacitor electrode 610.
That is, two capacitors may be provided. Also, the circuit protection device in accordance
with another exemplary embodiment may have capacitance that is adjustable according
to an area of the capacitor electrode 610. A portion of the capacitor electrode 610
may be exposed to one side of the sheet 190. For example, a portion of the capacitor
electrode 610 may be exposed to one side to form the lead-out electrode 620. The lead-out
electrode 620 may be connected to the second external electrode 5210 so that the lead-out
electrode 620 is exposed to one short side of the sheet 190.
[0061] The capacitor electrode may have various shapes. For example, two capacitor electrodes
may be disposed to face each other with an area, in which a hole is defined, therebetween.
Here, the two electrodes may have shapes that are symmetrical each other. As illustrated
in (a) to (c) of FIG. 8, the two capacitor electrodes having shapes symmetrical to
each other may be disposed to be spaced a predetermined distance from each other.
Here, the two capacitor electrodes 611 and 612 may be spaced apart from each other
with the holes 353 and 363 therebetween, and areas of the capacitor electrodes 611
and 612 facing the holes 353 and 363 may be respectively bent along arcs of the holes
353 and 356.
[0062] Also, as illustrated in (a) to (c) of FIG. 9, one capacitor electrode may be provided,
or two capacitor electrode may be provided. That is, as illustrated in (a) of FIG.
9, one capacitor electrode 610 may be spaced apart from the holes 353 and 363 to surround
predetermined areas of the holes 353 and 363. Here, a portion of the capacitor electrode
610 facing the holes 353 and 363 may be bent along the arcs of the holes 353 and 363.
Also, as illustrated in (b) of FIG. 9, the two capacitor electrodes 611 and 612 may
be disposed to be spaced a predetermined distance from each other with the holes 353
and 363 therebetween. Here, areas of one capacitor electrode 612 facing the holes
353 and 363 may be bent along the arcs of the holes 353 and 356, and each of areas
of the other capacitor electrode 612 facing the holes 353 and 363 may have a linear
shape. As illustrated in (c) of FIG. 9, a side, which faces each of the hole 353 and
363, of the two capacitor electrodes 611 and 612 disposed to spaced a predetermined
distance from each other with the holes 353 and 363 therebetween may have a linear
shape.
[0063] As described above, in the circuit protection device in accordance with another exemplary
embodiment, the capacitor electrode 610 may be disposed between the sheets 130 and
140 to form a first capacitor between the capacitor electrode 610 and the third coil
pattern 330 and a second capacitor between the capacitor electrode 610 and the second
coil pattern 320. As a result, as illustrated in the equivalent circuit diagram of
FIG. 10, the circuit protection device may include first and second inductors L11
and L12 and first and second capacitors C11 and C12 respectively connected to the
first and second inductors L11 and L12. That is, the circuit protection device in
accordance with another exemplary embodiment may include at least two inductors and
at least two capacitors respectively connected to the inductors.
[0064] In the circuit protection device in accordance with another exemplary embodiment,
the turn number of each of the coil patterns 310, 320, 330, and 340, an area of the
capacitor electrode 610, and distances between the coil patterns 310, 320, 330, and
340, i.e., a thickness of each of the sheets may be adjusted to adjust inductance
and capacitance, thereby adjusting a suppressible noise of a frequency. For example,
if each of the sheets 120, 130, 140, 150, and 160 is reduced in thickness, a noise
having a low frequency band may be suppressed. If each of the sheets 120, 130, 140,
150, and 160 increases in thickness, noises of a high frequency band may be suppressed.
The circuit protection device including the two inductors and the two capacitors,
i.e., a common mode noise filter may suppress noises of two frequency bands.
[0065] In frequency characteristics of the circuit protection device in accordance with
another exemplary embodiment, two peaks are generated in a frequency band of 1 GHz
or more, and thus, the noises of the two frequency bands may be suppressed. However,
in a common mode noise filter, which does not include a capacitor, in accordance with
the related art, one peak may be generated in the frequency band of 1 GHz, and thus,
only a noise of one frequency band may be suppressed. As a result, the circuit protection
device in accordance with another exemplary embodiment may suppress noises of at least
two frequency bands, and thus, may be used in portable electronic devices such as
smartphones, in which various frequencies are adopted, to improve quality of the electronic
devices.
[0066] In the foregoing embodiments, the ESD protection part 300 includes the first and
second internal electrodes 510 and 520, which are vertically spaced apart from each
other, and the ESD protection member 530 disposed between the first and second internal
electrodes 510 and 520. However, the ESD protection member 530 may be disposed so
that the first and second internal electrodes 510 and 520 are horizontally disposed
on the same sheet and partially overlap the first and second internal electrodes 510
and 520. That is, as illustrated in FIGS. 11 and 12, the first and second internal
electrodes 510 and 520 and the ESD protection member 530 may be disposed on the same
plane to realize the ESD protection part 3000. Here, FIG. 11 is a plan view of one
sheet 107 on which an ESD protection part 3000 is disposed in accordance further another
exemplary embodiment, and FIG. 12 is a cross-sectional view taken along line E-E'
of FIG. 11. Since a noise filter part 2000 may have one of the structures described
with reference to FIGS. 1 to 6 and the structure described with reference to FIGS.
7 to 10 in accordance with the foregoing embodiments, its detailed description and
illustration will be omitted.
[0067] As illustrated in FIGS. 11 and 12, a plurality of first internal electrodes 510 (511,
512, 513, and 514) may be disposed to be spaced apart from each other on one sheet
107 made of a magnetic material. Here, since the plurality of first internal electrodes
510 are respectively connected to a plurality of first external electrodes 4100, ends
of the first internal electrodes 510 may be exposed to a surface on which the first
external electrodes 4100 are disposed. Also, the second internal electrodes 520 may
be disposed to be spaced apart from the plurality of first internal electrodes 510
on the same plane as the plurality of first internal electrodes 510. Here, since the
second internal electrode is connected to a second external electrode 4200, one end
and the other end of the second internal electrode 520 may be exposed to a surface
on which the second external electrode 4200 is disposed. Also, a plurality of ESD
protection members 530 (531, 532, 533, and 534) are disposed between the plurality
of first internal electrodes 510 and the second internal electrode 520. That is, the
plurality of ESD protection members 530 may be disposed on a sheet between the first
and second internal electrodes 510 and 520, and at least a portion of the ESD protection
members may overlap the first and second internal electrodes 510 and 520. Here, the
ESD protection members 530 different from each other are disposed on the second internal
electrode 520 so that the ESD protection members 530 do not come into contact with
each other.
[0068] FIG. 13 is a perspective view of an unclaimed circuit protection device, and FIG.
14 is an exploded perspective view
[0069] Referring to FIGS. 13 and 14, a circuit protection device in accordance with this
unclaimed embodiment may include a noise filter part 2000 and cover layers 1100 and
1200 respectively disposed on upper and lower portions of the noise filter part 2000.
That is, the circuit protection device includes only a noise filter part without including
an ESD protection part. Here, the cover layers 1100 and 1200 may be disposed on the
upper and lower portions of the noise filter part 2000. That is, the first cover layer
1100, the noise filter part 2000, and the second cover layer 1200 may be successively
disposed downward. Here, the noise filter part 1000 may be formed by laminating the
plurality of coil patterns as described in accordance with an exemplary embodiment,
and at least two coil patterns may be connected to each other to form at least two
inductors. In addition, as described in another exemplary embodiment, the capacitor
may be disposed in the noise filter part 2000. Also, each of the first and second
cover layers 1100 and 1200 may be provided as a magnetic sheet, and the noise filter
part 2000 may be provided as a nonmagnetic sheet.
[0070] Although the coil patterns 310, 320, 330, and 340 of the noise filter part 2000 are
respectively disposed on the sheets in accordance with the foregoing embodiments,
two or more coil patterns may be disposed on one sheet. For example, two coil patterns
may be disposed to be spaced apart from each other on one sheet, and three coil patterns
may be disposed to be spaced apart from each other on one sheet. The plurality of
coil patterns spaced apart from each other may be vertically connected to each other
to constitute an inductor. Here, the coil patterns disposed on the same sheet may
have the same turn number or turn numbers different from each other. When the coil
patterns have the same turn number, a plurality of inductors having the same inductance
may be realized. When the coil patterns have turn numbers different from each other,
a plurality of inductors having at least two inductances different from each other
may be realized. Thus, a plurality of inductors may be realized in one circuit protection
device. Also, the ESD protection part may be disposed on a lower side and/or an upper
side of the noise filter part 2000. In unclaimed embodiments, the ESD protection part
may not be provided, and the cover layer may be disposed on the upper and lower sides
of the noise filter part 2000.
[0071] Also, before the first and second external electrodes 4100 and 4200 are formed, oxide
may be distributed on a surface of a laminate 10 to form an insulation member 5000.
That is, as illustrated in FIG. 15, the insulation member 5000 may be disposed on
the surface of the laminate 10. Here, the laminate 10 may be formed by laminating
nonmagnetic sheets or by laminating the nonmagnetic sheets with a magnetic sheet therebetween.
That is, the insulation member 5000 may be formed on the surface of the laminate 10
that realizes circuit protection devices having various shapes. Also, in the insulation
member 5000, oxide having a crystal state or an amorphous state may be dispersed and
distributed on the surface of the laminate 10. The oxide may be distributed before
a portion of each of the external electrodes 4100 and 4200 is formed through the printing
process or distributed before the plating process is performed. That is, the oxide
may be distributed on the surface of the laminate 10 before the plating process when
the external electrodes 4100 and 4200 are formed through the plating process. At least
a portion of the oxide distributed on the surface may be melted. Thus, the insulation
member 5000 may be formed before the first and second external electrodes 4100 and
4200 are formed and also be formed on the surface of the laminate 10. Here, at least
a portion of the oxide may be uniformly distributed on the surface of the laminate
10 as illustrated in (a) of FIG. 15, or at least a portion of the oxide may be non-uniformly
disposed with sizes different from each other as illustrated in (b) FIG. 15. Also,
as illustrated in (c) of FIG. 15, a recess part may be defined in at least a portion
of the surface of the laminate 10. That is, the oxide may be formed to form a protrusion
part, and at least a portion of an area on which the oxide is not formed may be recessed
to form the recess part. Since the oxide is distributed before the plating process,
the surface of the laminate 10 may be deformed, and thus, resistance on the surface
of the laminate 10 may be uniform. Thus, the plating process may be uniformly performed,
and thus, the external electrode may be controlled in shape. That is, the resistance
on at least an area of the surface of the laminate 10 may be different from that on
the other area of the surface of the laminate 10. When the plating process is performed
in a state in which the resistance is non-uniform, the plating process may be well
performed on an area having relatively low resistance than an area having relatively
high resistance to cause ununiformity in growth of the plating layer. Thus, to solve
the above-described limitation, the surface resistance of the laminate 10 has to be
uniformly maintained. For this, the oxide having the particle or molten state may
be dispersed on the surface of the laminate 10 to form the insulation member 5000.
Here, the oxide may be partially distributed on the surface of the laminate 10. Alternatively,
the oxide may be distributed in the form of the layer on at least one area and partially
distributed on at least one area. For example, as illustrated in (a) of FIG. 15, the
oxide may be distributed in an island shape on the surface of the laminate 10 to form
the insulation member 5000. That is, the oxide that is in the crystal or amorphous
state may be disposed to be spaced apart from each other and distributed in the island
shape on the surface of the laminate 10. Thus, at least a portion of the surface of
the laminate 10 may be exposed. Also, the oxide may be formed on the form of the layer
on the at least one area and distributed in the island shape on at least a portion
of the surface of the laminate 10. That is, at least two oxides may be connected to
each other to form the layer on at least one area and the island shape on at least
one area. Thus, at least a portion of the surface of the laminate 10 may be exposed
by the oxide, i.e., the insulation member 5000. The total area of the insulation member
500, which is made of the oxide distributed in the island shape on the at least a
portion of the surface of the laminate 10 may be, for example, 10% to 90% of the total
area of the surface of the laminate 10. Here, at least one oxide may be used as the
oxide, which is in the particle or molten state, for realizing the uniform surface
resistance of the laminate 10. For example, at least one of Bi
2O
3, BO
2, B
2O
3, ZnO, Co
3O
4, SiO
2, Al
2O
3, MnO, H
2BO
3, H
2BO
3, Ca(CO
3)
2, Ca(NO
3)
2, and CaCO
3 may be used as the oxide.
[0072] As described above, the technical idea of the present invention has been specifically
described with respect to the above embodiments, but it should be noted that the foregoing
embodiments are provided only for illustration while not limiting the present invention.
Various embodiments may be provided to allow those skilled in the art to understand
the scope of the preset invention, but the present invention is not limited thereto
and only limited by the claims.