Technical Field
[0001] The present disclosure relates to the field of high-pressure common rail systems,
and specifically to a high-pressure common rail system for a low-speed engine with
multiple safety protection functions.
Background Art
[0002] With the increasingly stringent emission regulations and the increasingly severe
energy crisis, high-pressure common rail systems have been used more and more in diesel
fuel systems. The high-pressure common rail systems meet the increasingly stringent
emission regulations and user requirements for fuel economy and emission due to their
characteristics such as high injection pressure, high response speed, and flexible
control. The high-pressure common rail systems are different from the traditional
mechanical fuel injection systems in that the high-pressure common rail systems have
always been in a high-pressure state. In this case, there are very strict requirements
on the reliability and safety of the parts of the high-pressure common rail systems.
[0003] For example,
EP1314883A2 discloses a fuel supply installation in the form of a common-rail system of an internal
combustion engine having a plurality of cylinders,
GB2330871A discloses a common rail fuel injection system with an overflow valve for an internal
combustion engine,
US5577479A discloses a fuel injection system for motor vehicles,
US2016153366A1 discloses a pump arrangement and system for a motor vehicle, and
US6024064A discloses a high pressure fuel injection system for internal combustion engine.
Summary
[0004] The object of the present disclosure includes providing a high-pressure common rail
system for a low-speed engine with multiple safety protection functions to achieve
the multiple safety protection functions for the high-pressure common rail system.
[0005] The present disclosure provides a high-pressure common rail system for a low-speed
engine with multiple safety protection functions, comprising: an ECU (electronic control
unit); an electronic control high-pressure fuel pump provided therein with an electronic
control proportional valve, wherein the electronic control proportional valve is configured
to adjust the proportion of feed of a low-pressure heavy fuel from a fuel tank of
the low-speed engine into the electronic control high-pressure fuel pump according
to a first instruction from the ECU; a first distribution block connected to the electronic
control high-pressure fuel pump via a first high-pressure fuel pipe; a second distribution
block connected to the first distribution block via a second high-pressure fuel pipe;
and a common rail pipe connected to the second distribution block via a third high-pressure
fuel pipe, wherein a sensor configured to detect the fuel pressure of the high-pressure
heavy fuel in the common rail pipe is mounted onto the common rail pipe, and the sensor
is connected to the ECU; a plurality of flow limiting valve components are mounted
onto the common rail pipe, and each of the flow limiting valve components is connected
to one of electronic control fuel injectors via one of fourth high-pressure fuel pipes;
the flow limiting valve component is configured to be closed when a fuel pressure
difference between the fourth high-pressure fuel pipe and the common rail pipe exceeds
a set pressure difference; a pressure limiting valve component is further mounted
onto the common rail pipe, and the pressure limiting valve component is configured
to be opened when the fuel pressure in the common rail pipe exceeds a first set pressure
value, so that the fuel pressure in the common rail pipe is stabilized at a target
pressure value; the first distribution block is equipped with a shut-off valve component
and a safety valve component, wherein the shut-off valve component is configured to
perform a pressure relief process according to a second instruction from the ECU;
the safety valve component is configured to be opened when the shut-off valve component
and the pressure limiting valve component malfunction and the fuel pressure in the
common rail pipe exceeds a second set pressure value; circulation valve components
are further mounted onto the common rail pipe and the electronic control fuel injectors,
and the circulation valve components are configured to be opened when the low-speed
engine is stopped, so that a circulation loop is formed, respectively, between the
fuel tank of the low-speed engine and the common rail pipe, and between the fuel tank
of the low-speed engine and each of the electronic control fuel injectors.
[0006] Optionally, the electronic control high-pressure fuel pump comprises: a pump body,
provided with a central hole along its axial direction; a pump cover, mounted onto
an upper end surface of the pump body; and a fuel inlet and outlet valve component,
a plunger and barrel assembly, a plunger spring, a lower spring seat component, and
a guide piston component, each being assembled in the central hole of the pump body;
the electronic control proportional valve is assembled on a side of the pump body;
the fuel inlet and outlet valve component comprises a fuel inlet valve component and
a fuel outlet valve component, wherein the fuel inlet valve component comprises a
fuel inlet valve seat, a fuel inlet valve, and a fuel inlet valve spring; the fuel
inlet valve is mounted in a central hole of the fuel inlet valve seat; the fuel inlet
valve spring is positionally limited between the fuel inlet valve and a wall of the
hole of the fuel inlet valve seat; a conical sealing is formed between the fuel inlet
valve and the fuel inlet valve seat by being pressed by the fuel inlet valve spring;
the fuel outlet valve component comprises a fuel outlet valve seat, a fuel outlet
valve, a fuel outlet valve spring, and a fuel outlet valve spring seat, wherein the
fuel outlet valve spring seat is mounted at an upper end of the fuel outlet valve
seat; the fuel outlet valve is mounted in a central hole of the fuel outlet valve
seat; the fuel outlet valve spring is positionally limited between the fuel outlet
valve and the fuel outlet valve spring seat; a conical sealing is formed between the
fuel outlet valve and the fuel outlet valve seat by being pressed by the fuel outlet
valve spring; a high-pressure fuel outlet chamber is formed between the fuel outlet
valve seat and the fuel inlet valve seat; a high-pressure fuel chamber is formed in
the plunger and barrel assembly, and the high-pressure fuel chamber communicates with
the high-pressure fuel outlet chamber via a fuel hole in the fuel inlet valve seat;
the electronic control proportional valve communicates with the fuel inlet hole of
the fuel inlet valve seat via a first fuel hole in the pump body, and the fuel inlet
hole is communicated with or disconnected from the high-pressure fuel chamber; the
electronic control proportional valve is provided with a cooling circulation fuel
passage, and cooling fuel from a cooling fuel passage of the pump body is injected
into the cooling circulation fuel passage and then flows back into the cooling fuel
passage of the pump body.
[0007] Optionally, the plunger and barrel assembly comprises: a plunger barrel, disposed
at a lower end of the fuel inlet valve seat; and a plunger, slidably inserted into
a central hole of the plunger barrel, wherein the high-pressure fuel chamber is formed
by the plunger barrel, the plunger, together with the fuel inlet valve seat; an inner
wall of the plunger barrel is provided with a first annular groove and a second annular
groove; the pump body is provided with a mixed oil outlet passage and a lubricating
oil supply passage, the mixed oil outlet passage communicates with the first annular
groove via a mixed oil passage in the plunger barrel, and the lubricating oil supply
passage communicates with the second annular groove via a lubricating oil passage
in the plunger barrel; and the first annular groove is located above the second annular
groove.
[0008] Optionally, the lower spring seat component is disposed under the plunger and barrel
assembly, and the lower spring seat component comprises: an outer spring seat, being
in a boss-type structure thinner on the outer side and thicker in the middle as a
whole, wherein the outer spring seat has an upper end surface provided with a third
counterbore with a concave spherical surface; an upper sphere, mounted, at its lower
part, in the third counterbore, and provided, at its lower end surface, with a convex
spherical surface mating with the concave spherical surface; and an inner spring seat,
covering an upper part of the upper sphere, wherein the inner spring seat has a first
axial through hole penetrating its upper and lower end surfaces; a lower cylindrical
head of the plunger is positionally limited in the first axial through hole, and the
lower cylindrical head of the plunger has a lower end surface abutting against an
upper end surface of the upper sphere.
[0009] Optionally, a spherical hole is provided in the center of the third counterbore,
a third annular groove is provided in a lower end surface of the outer spring seat,
and the spherical hole communicates with the third annular groove via a lubricating
oil inlet conduit; the outer surface of the outer spring seat is formed as a tapered
surface, which is provided with a lubricating oil outlet passage communicating with
the lower end surface of the outer spring seat; the lubricating oil outlet passage
is provided obliquely; a circumferential annular groove is provided in a circumferential
direction of the upper sphere; a positioning pin is mounted in the circumferential
annular groove through a positioning pin hole of the outer spring seat; and a spacing
between upper and lower surfaces of the circumferential annular groove is greater
than a cylindrical diameter of a part of the positioning pin that is located in the
circumferential annular groove.
[0010] Optionally, the first axial through hole provided inside the inner spring seat comprises:
a seventh hole, an eighth hole, and a ninth hole having diameters gradually increasing
from top to bottom, wherein a first guide hole with a gradually increasing diameter
is provided between the eighth hole and the ninth hole; a second guide hole with a
gradually increasing diameter is provided on a side of the ninth hole facing the upper
sphere; the walls of the first guide hole and the second guide hole are formed as
tapered guide surfaces; the upper part of the upper sphere is positioned partially
in the ninth hole through the second guide hole; there is a gap greater than or equal
to 1 mm between the upper sphere and the ninth hole; there is a gap greater than or
equal to 1 mm between the third counterbore and the upper sphere.
[0011] Optionally, the electronic control high-pressure fuel pump further comprises: an
upper spring seat, sleeved on the plunger barrel and located at an upper end of the
inner spring seat; and the plunger spring comprises: a first plunger spring, compressively
mounted between the upper spring seat and the outer spring seat; and a second plunger
spring, compressively mounted between the upper spring seat and the inner spring seat.
[0012] Optionally, the diameters of the concave spherical surface in the outer spring seat
and the convex spherical surface of the upper sphere are each 20 to 100 times the
diameter of the plunger.
[0013] Optionally, the guide piston component comprises: a guide piston, provided with a
first mounting hole at a central position of its upper end surface and provided with
a second mounting hole at its lower end surface, wherein the first mounting hole and
the second mounting hole communicate with each other via a communicating hole, the
lower spring seat component is mounted in the first mounting hole; a roller component,
including a roller mounted in the second mounting hole, a roller bushing interference-fitted
in the roller, and thrust bearings interference-fitted at both ends of the roller
in its axial direction, wherein an annular groove is provided in the axial direction
of the roller, and an arc-shaped transitional connection is formed between the bottom
of the annular groove and an end surface of the roller in the axial direction; and
a roller pin, fitted in the roller bushing with a clearance; a boss is disposed protruding
from a wall of the second mounting hole, and the boss is in contact with the thrust
bearing; a plurality of first radial oil grooves are uniformly arranged in the boss
along its radial direction, and the first radial oil grooves are provided with respect
to the thrust bearing.
[0014] Optionally, the outer surface of the roller pin is provided as a cylindrical surface,
wherein the cylindrical surface is provided with first waist-shaped grooves and second
waist-shaped grooves at its two positions, respectively, and the first waist-shaped
grooves and the second waist-shaped grooves are provided in the middle positions of
the roller pin, wherein the second waist-shaped groove is provided in the first waist-shaped
groove and recessed inward relative to the first waist-shaped groove, and a stepped
shape is formed by them together; a small-angle wedge-shaped groove with an angle
between 5° and 20° is formed between the first waist-shaped groove and the outer surface
of the roller bushing, and a second oil hole is provided in the second waist-shaped
groove; the two second oil holes at the two positions communicate with each other
via a lubricating oil outlet passage, and the two second oil holes are provided at
an angle of 70° to 120°.
[0015] Optionally, the outer surface of the guide piston is provided as a cylindrical surface,
wherein the cylindrical surface is provided with a partial circumferential oil groove
and a circumferential oil groove, a first axial oil groove, and a vertical groove,
wherein the vertical groove is provided in the circumferential oil groove, and the
vertical groove communicates with the partial circumferential oil groove via the first
axial oil groove; the cylindrical surface is further provided with an inclined hole
having two ends communicating with the circumferential oil groove and an inner wall
of the second mounting hole, respectively; the cylindrical surface is further provided
with a second axial oil groove communicating with the circumferential oil groove;
the cylindrical surface is further provided with a first straight hole and a second
straight hole connected to each other, wherein the first straight hole communicates
with the first axial oil groove, and the second straight hole communicates with the
first mounting hole; a lubricating oil inlet passage is provided in the outer cylindrical
surface of the roller pin, the lubricating oil inlet passage is provided with respect
to the inclined hole, and the lubricating oil inlet passage communicates with the
lubricating oil outlet passage.
[0016] Optionally, the outer cylindrical surface of the roller pin is provided with a DLC
(diamond-like carbon) coating; the roller bushing is made of a copper alloy; the thrust
bearing is made of a copper alloy; forced lubrication and dynamic pressure lubrication
are used between the roller pin and the roller bushing; and forced lubrication and
dynamic pressure lubrication are used between the thrust bearing and the boss.
[0017] Optionally, the common rail pipe has a fuel inlet conduit and a fuel return conduit
penetrating both ends thereof; a fuel inlet end cap is fixed at one end of the common
rail pipe, and the fuel inlet end cap is provided with a fuel inlet port communicating
with the fuel inlet conduit; an end cover is fixed at the other end of the common
rail pipe, the end cover is provided with a fuel outlet port communicating with the
fuel inlet conduit, and the circulation valve component is fixed to the end cover;
the pressure limiting valve component and the plurality of flow limiting valve components
communicate with the fuel inlet conduit, respectively, and the pressure limiting valve
component and the plurality of flow limiting valve components communicate with the
fuel return conduit, respectively.
[0018] Optionally, the circulation valve component comprises: a first valve body fixed to
the end cover, which has a lower end surface provided with a first central hole communicating
with the fuel outlet port, and an upper end surface provided with a second central
hole, wherein the first central hole communicates with the second central hole; a
first valve core, which is slidably inserted into the first central hole from the
lower end surface of the first valve body and partially located in the second central
hole; a lower spring seat, which is sleeved on the part of the first valve core that
is located in the second central hole, and which is fixedly connected to the first
valve core, wherein a first cavity is formed between the lower spring seat and the
bottom of the second central hole; a gland, which is fixed to the upper end surface
of the first valve body, wherein the gland has an upper end surface provided with
a threaded hole; a fuel return joint, which is partially fixed in the threaded hole;
and a first pressure regulating spring, which is positionally limited between the
lower spring seat and the gland; the first valve body is provided with a first fuel
return passage communicating with the first central hole, the gland is provided with
a second fuel return passage communicating with the first fuel return passage, the
fuel return joint is provided with a third fuel return passage communicating with
the second fuel return passage, and a fuel circulation passage is formed by the first
fuel return passage, the second fuel return passage, and the third fuel return passage;
the first valve body is provided with a first air inlet passage communicating with
the first cavity, and the gland is provided with a second air inlet passage communicating
with the first air inlet passage and an air inlet port communicating with the second
air inlet passage; when a spring force from the first pressure regulating spring is
less than or equal to a pressure sum of the pressure of a gas introduced into the
first cavity and the pressure of fuel fed into the fuel inlet end of the first central
hole, a conical seal is formed between the first valve core and the first central
hole, and the conical seal is formed at a position below a position where the first
fuel return passage is connected to the first central hole.
[0019] Optionally, a first conical seal surface and an external thread are provided at the
top of the part of the first valve core that is located in the second central hole,
and the external thread is located at an upper end of the first conical seal surface;
the lower spring seat passes through the external thread and then is sleeved on the
first conical seal surface, and the lower spring seat has a second conical seal surface
that forms a conical seal with the first conical seal surface; the lower spring seat
is tightly pressed by a nut sleeved on the periphery of the external thread; and the
first pressure regulating spring is sleeved on the nut and fixed to the lower spring
seat.
[0020] Optionally, the fuel return joint is screwed in the threaded hole; the upper end
surface of the gland is provided with a first flat sealing surface at the opening
of the threaded hole; and the fuel return joint is provided with a second flat sealing
surface that forms a planar seal with the first flat sealing surface.
[0021] Optionally, a third cavity is formed between the lower end surface of the fuel return
joint and the bottom of the threaded hole, the third cavity communicates with the
second fuel return passage and the third fuel return passage, respectively, and the
maximum flow area of the third cavity is greater than the maximum flow area of the
second fuel return passage.
[0022] Optionally, when the first valve core moves upward to a top dead center position
in the first valve body, a distance H2 between the lower end surfaces of the first
valve body and the first valve core is smaller than a distance H1 between the lower
end surface of the lower spring seat and the bottom of the second central hole.
[0023] Optionally, the lower spring seat comprises a third central hole configured to limit
the position of the first pressure regulating spring and a fourth central hole configured
to mate with the first valve core, wherein the fourth central hole has a diameter
larger than the diameter of the external thread; and the lower spring seat has an
outer diameter the same as the diameter of the second central hole.
[0024] Optionally, the flow limiting valve component comprises a valve seat connected to
the high-pressure common rail pipe, a second valve body, a second valve core, and
a second pressure regulating spring, wherein the valve seat has a first fuel inlet
hole communicating with the high-pressure common rail pipe;
the second valve body has a second axial through hole penetrating its upper and lower
end surfaces, and the valve seat is partially press-fitted into the second axial through
hole from the lower end surface of the second valve body; the second valve core is
mounted in the second axial through hole and disposed above the valve seat; the second
valve core has an axial blind hole communicating with the first fuel inlet hole, and
a cavity is formed between an upper end of the second valve core and the second axial
through hole; the second valve core is provided therein with a transverse flow restricting
orifice communicating the axial blind hole with the cavity; the second pressure regulating
spring is sleeved on the second valve core and is positionally limited in the cavity;
the head of the upper end of the second valve core has a third conical seal surface
and a fourth conical seal surface connected to each other; and a first sealing seat
surface that can form a conical seal with the third conical seal surface is formed
at a wall of the second axial through hole, and a gap may be formed between the first
sealing seat surface and the fourth conical seal surface.
[0025] Optionally, the second axial through hole comprises a first hole, a second hole,
a third hole, a fourth hole, a fifth hole, and a sixth hole, connected to one another
in sequence from top to bottom; the valve seat is partially press-fitted in the first
hole; the second valve core is assembled in the second hole, and a cavity is formed
between the upper part of the second valve core and the upper part of the second hole;
the first sealing seat surface is formed at the wall of the third hole; a second sealing
seat surface sealed to the fuel inlet end of the fuel pipe of the fuel injector is
formed at the wall of the fifth hole; and the diameter of the sixth hole is larger
than the diameter of each of the first hole, the second hole, the third hole, the
fourth hole, and the fifth hole.
[0026] Optionally, the second valve body is further provided with a fourth fuel return passage
having one end communicating with the sixth hole, and the other end communicating
to the lower end surface of the second valve body; the maximum sectional flow area
of the fourth fuel return passage is smaller than the maximum sectional flow area
of the gap formed between the fourth conical seal surface and the first sealing seat
surface; and the maximum sectional flow area of the fourth fuel return passage is
smaller than both the maximum sectional flow area of the second axial through hole
and the maximum sectional flow area of the fourth hole.
[0027] Optionally, a fifth conical seal surface forming a conical seal with the high-pressure
common rail pipe is formed at the head of the lower end of the valve seat; and a first
flat portion communicating with the fourth fuel return passage is formed by milling
the larger outer cylindrical portion of the lower end of the valve seat.
[0028] Optionally, the pressure limiting valve component comprises a third valve body, a
third valve core, a third pressure regulating spring, and a fuel pipe joint, wherein
the third valve body is provided therein with a first-stage hole, a second-stage hole,
a third-stage hole, and a fourth-stage hole communicating in sequence from bottom
to top; the third valve core has a head slidably inserted from the fourth-stage hole
through the third-stage hole and partially into the second-stage hole, and a conical
seal can be formed between the third valve core and the second-stage hole; a first
gap allowing the fuel to pass therethrough is formed between the third valve core
and the third-stage hole, and a second gap allowing the fuel to pass therethrough
is formed between the third valve core and the fourth-stage hole; the fuel pipe joint
is fixed at an upper end of the third valve body, the fuel pipe joint is provided
therein with a first counterbore, a second counterbore, and a fuel outlet hole communicating
in sequence from bottom to top, and the third pressure regulating spring is positionally
limited between the third valve core and the second counterbore.
[0029] Optionally, the diameter of the first-stage hole is larger than the diameter of the
second-stage hole, and the diameter of the third-stage hole is larger than the diameter
of each of the second-stage hole and the fourth-stage hole.
[0030] Optionally, the head of the third valve core is provided with a first tapered portion
and a second tapered portion connected to each other, the first tapered portion has
an angle of 120°, and the second tapered portion has an angle of 60°; second flat
portions symmetrically arranged are formed by milling the outer cylindrical portion
of the middle part of the third valve core, a second gap allowing the fuel to passthrough
is formed between the second flat portion and the wall of the fourth-stage hole of
the third valve body, and the gap has a maximum fuel flowable area larger than the
maximum fuel flowable area in the second-stage hole; a plurality of recesses arranged
spaced apart from one another are provided in the outer cylindrical portion of the
middle-upper part of the third valve core, and a third gap allowing the fuel to passthrough
is formed between each of the recesses and the first counterbore; and the third pressure
regulating spring is sleeved on the second smaller outer cylindrical portion of the
upper part of the third valve core.
[0031] Optionally, a sealing seat surface forming the conical seal with the second tapered
portion is formed at a connection between the second-stage hole and the third-stage
hole, and there is an angular deviation less than 1° between the sealing seat surface
and the second tapered portion; and the fourth-stage hole of the third valve body
has a diameter ϕ of 5 mm.
[0032] Optionally, a limited distance h1 within which the third valve core is movable is
provided between the third valve core and the bottom of the first counterbore of the
fuel pipe joint; an overlap region h is provided between the third valve core and
the third valve body.
[0033] The present disclosure has the advantageous effect that multiple valves such as a
circulation valve component, a pressure limiting valve component, a shut-off valve
component, and a safety valve component are involved in the common rail system, and
the various types of valves are opened under specific working conditions, so as to
achieve multiple safety protection functions of the common rail system.
Brief Description of Drawings
[0034]
FIG. 1 is a schematic structural view of a high-pressure common rail system for a
low-speed engine according to an embodiment of the present disclosure;
FIG. 2 is a schematic structural view of an electronic control high-pressure fuel
pump in a high-pressure common rail system for a low-speed engine according to an
embodiment of the present disclosure;
FIG. 3 is a schematic structural view of a fuel inlet and outlet valve component according
to an embodiment of the present disclosure;
FIG. 4 is a schematic structural view of a plunger and barrel assembly in the prior
art;
FIG. 5 is a schematic view showing fitting among a plunger and barrel assembly and
a pump body, a fuel inlet valve seat, and an upper spring seat according to an embodiment
of the present disclosure;
FIG. 6 is a schematic structural view of an angle formed between a plunger and an
upper sphere due to uneven forces according to an embodiment of the present disclosure;
FIG. 7 is a schematic structural view of the plunger fitted to the upper sphere adjusted
with a spherical surface according to an embodiment of the present disclosure;
FIG. 8 is a schematic structural view of a lower spring seat component fitted with
a plunger according to an embodiment of the present disclosure;
FIG. 9 is a schematic sectional view of a lower spring seat component according to
an embodiment of the present disclosure;
FIG. 10 is a schematic sectional view of a lower spring seat component according to
an embodiment of the present disclosure;
FIG. 11 is a schematic structural view of an inner spring seat according to an embodiment
of the present disclosure;
FIG. 12 is a schematic structural view of an upper sphere according to an embodiment
of the present disclosure;
FIG. 13 is a schematic sectional view of an outer spring seat according to an embodiment
of the present disclosure;
FIG. 14 is a schematic sectional view of an outer spring seat according to an embodiment
of the present disclosure;
FIG. 15 is a schematic sectional view of a guide piston component according to an
embodiment of the present disclosure;
FIG. 16 is a schematic sectional view of a guide piston according to an embodiment
of the present disclosure;
FIG. 17 is a schematic structural view of a guide piston according to an embodiment
of the present disclosure;
FIG. 18 is a schematic sectional view of a guide piston according to an embodiment
of the present disclosure;
FIG. 19 is a schematic structural view of a roller pin according to an embodiment
of the present disclosure;
FIG. 20 is a schematic axially sectional view of a roller pin according to an embodiment
of the present disclosure;
FIG. 21 is a schematic radially sectional view of a roller pin according to an embodiment
of the present disclosure;
FIG. 22 is a schematic view showing a force distribution on a roller component not
provided with an annular groove according to an embodiment of the present disclosure;
FIG. 23 is a schematic view showing a force distribution on a roller component provided
with an annular groove according to an embodiment of the present disclosure;
FIG. 24 is a schematic structural view of a common rail pipe and some components thereon
according to the present disclosure;
FIG. 25 is a schematic structural view of a common rail pipe and some components thereon
according to the present disclosure;
FIG. 26 is a schematic structural view of a common rail pipe and some components thereon
according to the present disclosure;
FIG. 27 is a schematic structural view of a flow limiting valve according to an embodiment
of the present disclosure;
FIG. 28 is a schematic structural view of a flow limiting valve according to an embodiment
of the present disclosure;
FIG. 29 is a schematic structural view of a flow limiting valve according to an embodiment
of the present disclosure;
FIG. 30 is a schematic structural view of a pressure limiting valve according to an
embodiment of the present disclosure;
FIG. 31 is a schematic structural view of a pressure limiting valve according to an
embodiment of the present disclosure;
FIG. 32 is a schematic structural view of a circulation valve according to an embodiment
of the present disclosure;
FIG. 33 is a schematic structural view of a second axial through hole according to
an embodiment of the present disclosure;
FIG. 34 is a schematic structural view of a circulation valve according to an embodiment
of the present disclosure;
FIG. 35A is a front view of a guide piston according to an embodiment of the present
disclosure; and FIG. 35B is a left side view of a guide piston according to an embodiment
of the present disclosure.
[0035] Description of Reference Signs: 1-electrically controlled high-pressure fuel pump;
101-pump body; 1012-lubricating oil supply passage; 102-pump cover: 103-fuel inlet
and outlet valve component; 1031-fuel inlet valve component; 10311-fuel inlet valve
seat; 10312-fuel inlet valve; 10313-fuel inlet valve spring; 1032-fuel outlet valve
component; 10321-fuel outlet valve seat; 10322-fuel outlet valve; 10323-fuel outlet
valve spring; 10324-fuel outlet valve spring seat; 1033-high-pressure fuel outlet
chamber; 104-plunger and barrel assembly; 1041-high-pressure fuel chamber; 1042-plunger
barrel; 10421-first annular groove; 10422-second annular groove; 10423-mixed oil passage;
10424-lubricating oil passage; 1043-plunger; 10431-lower cylindrical head; 105-plunger
spring; 1051-first plunger spring; 1052-second plunger spring; 106-lower spring seat
component; 1061-outer spring seat; 10611-third counterbore; 10612-spherical hole;
10613-third annular groove; 10614-lubricating oil inlet conduit: 10615-lubricating
oil outlet passage; 10616-positioning pin hole; 1062-upper sphere; 10621-circumferential
annular groove: 1063-inner spring seat; 10631-first axial through hole; 10632-seventh
hole; 10633-eighth hole; 10634-ninth hole; 10635-first guide hole; 10636-second guide
hole; 10637-tapered guide surface; 10638-relief groove; 10639-annular weight-reducing
groove; 1064-positioning pin; 107-guide piston component; 1071-guide piston; 10711-first
mounting hole; 10726-second chamfer; 10712-second mounting hole; 10713-communicating
hole; 10714-boss; 10715-first radial oil groove; 10727-tenth hole; 10713-communicating
hole; 10716-first axial oil groove; 10717-vertical groove; 10718-inclined hole; 10719-second
axial oil groove; 10720-first straight hole; 10721-second straight hole; 10725-circumferential
oil groove; 10729-partial circumferential oil groove; 10741-first chamfer; 1072-roller
component; 10728-roller; 10724-annular groove; 10722-roller bushing; 10723-thrust
bearing; 1073-roller pin; 10731-first waist-shaped groove; 10732-second waist-shaped
groove; 10733-second oil hole; 10735-lubricating oil inlet passage; 10739-third radial
oil passage; 10740-axial oil passage; 10736-eleventh hole; 10737-return spring; 10738-stop
pin; 2-electrically controlled proportional valve; 109-upper spring seat; 3-first
high-pressure fuel pipe; 5-shut-off valve component; 6-first distribution block; 7-safety
valve component; 8-second high-pressure fuel pipe; 9-second distribution block; 10-third
high-pressure fuel pipe; 14-fourth high-pressure fuel pipe; 15-electronic control
fuel injector; 12-common rail pipe; 1201, 505-fuel inlet conduit; 1202-fuel return
conduit; 1203-first notch; 1204-second notch; 1205-fuel return hole; 121-fuel inlet
end cap; 122-end cover; 123-pressure limiting valve mounting seat; 124-sensor; 125-flow
limiting valve mounting seat; 126-bracket; 127-sensor mounting seat; 128-first bolt;
129-screw; 131-third waist-shaped hole; 16-circulation valve component; 161-first
valve body; 1601-first central hole; 1602-second central hole; 1605-first fuel return
passage; 163-third sealing ring groove; 1619-guide portion; 1620-first sealing ring
groove; 1622-second sealing ring groove; 1608-first air inlet passage; 1623-air outlet
passage; 162-first valve core; 1611-first conical seal surface; 1612-external thread;
1624-third sealing ring; 164-lower spring seat; 1617-third central hole; 1618-fourth
central hole; 1613-second conical seal surface; 1625-fourth sealing ring groove; 1626-mating
portion; 1627-fourth sealing ring; 1628-first sealing ring; 167-gland; 1606-second
fuel return passage; 1603-threaded hole; 1629-second air inlet passage; 1630-air inlet
port; 1615-first flat sealing surface; 168-fuel return joint; 1616-second flat sealing
surface; 1607-third fuel return passage; 169-first pressure regulating spring; 1614-nut;
1631-second sealing ring; 1632-screw; 18-pressure limiting valve component; 181-third
valve body; 182-third valve core; 183-second O-ring seal; 184-second bolt; 185-third
pressure regulating spring; 186-fuel pipe joint; 18604-fifth sealing ring groove;
187-pressure regulating gasket; 18101-first-stage hole; 18102-second-stage hole; 18103-sealing
seat surface; 18104-third-stage hole; 18105-fourth-stage hole; 18601-first counterbore;
18602-second counterbore; 18603-fuel outlet hole; 18201-first tapered portion; 18202-second
tapered portion; 18203-second flat portion; 18204-third outer cylindrical portion;
18205-recess; 18206-second smaller outer cylindrical portion; h-overlap region; h1-limited
distance; 13-flow limiting valve component; 131-valve seat; 132-second valve body;
133-second valve core; 136-first O-ring seal; 135-second pressure regulating spring;
13101-first fuel inlet hole; 13102-fifth conical seal surface; 13103-sunk groove;
13104-first flat portion; 13105-larger end surface; 13106-first smaller outer cylindrical
portion; 13201-smaller end surface; 13202-large bevel; 13203-first mating portion;
13204-second mating portion; 13205-third hole; 13206-first sealing seat surface; 13207-fourth
hole; 13208-second sealing seat surface; 13209-second axial through hole; 13210-fourth
fuel return passage; 13211-screw mounting hole; 13212-first hole; 13213-second hole;
13214-fifth hole; 13215-sixth hole; 13301-first outer cylindrical portion; 13302-axial
blind hole; 13303-second outer cylindrical portion; 13304-transverse flow restricting
orifice; 13305-third conical seal surface; 13306-fourth conical seal surface.
Detailed Description of Embodiments
[0036] Exemplary embodiments of the present disclosure will be described below in more detail
with reference to the accompanying drawings. Although the exemplary embodiments of
the present disclosure are shown in the accompanying drawings, it should be understood
that the present disclosure may be implemented in various forms and is not intended
to be limited by the embodiments set forth herein. Rather, these embodiments are provided
to enable a more thorough understanding of the present disclosure and to fully convey
the scope of the present disclosure to those skilled in the art.
[0037] It should be noted that when an element is referred to as being "fixed to" another
element, it may be directly on the other element or an intervening element may exist
therebetween. When an element is considered to be "connected" to another element,
it may be connected directly to the other element or an intervening element may be
present therebetween. In contrast, when an element is referred to as being "directly
on" another element, no intervening element exists therebetween. The terms "vertical",
"horizontal", "left", "right", and the like used herein are intended for illustrative
purposes only.
[0038] In the present disclosure, terms such as "mounted", "coupled", "connected", and "fixed"
should be understood broadly unless otherwise expressly specified or defined. For
example, connection may be fixed connection or detachable connection or integral connection,
may be mechanical connection or electric connection, or may be direct coupling or
indirect coupling via an intermediate medium, or internal communication between two
elements or mutual interaction between two elements. The specific meanings of the
above-mentioned terms in the present disclosure can be understood by those of ordinary
skill in the art according to specific situations.
[0039] In addition, the terms "first" and "second" are used for descriptive purposes only,
and should not be understood as an indication or implication of relative importance
or an implicit indication of the number of the indicated technical features. Therefore,
a feature defined with the terms "first" and "second" may explicitly or implicitly
include one or more such features. In the description of the present disclosure, "a
plurality" means two or more, unless otherwise expressly and specifically defined.
[0040] Referring to FIG. 1, the present disclosure provides a high-pressure common rail
system for a low-speed engine with multiple safety protection functions, comprising:
an electronic control unit (ECU); an electronic control high-pressure fuel pump 1,
provided therein with an electronic control proportional valve 2, which is configured
to adjust the proportion of feed of a low-pressure heavy fuel from a fuel tank of
the low-speed engine into the electronic control high-pressure fuel pump 1 according
to a first instruction from the ECU, wherein the electronic control high-pressure
fuel pump 1 employs a single plunger structure, and the system is provided with three
electronic control high-pressure fuel pumps 1, which serve as backups for one another,
to prevent the failure of the system caused by a fault in the high-pressure fuel pump;
a first distribution block 6 connected to the electronic control high-pressure fuel
pumps 1 via corresponding first high-pressure fuel pipes 3; a second distribution
block 9 connected to the first distribution block 6 via a second high-pressure fuel
pipe 8; and a common rail pipe 12 connected to the second distribution block 9 via
a third high-pressure fuel pipe 10. A sensor 17 configured to detect the fuel pressure
of the high-pressure heavy fuel in the common rail pipe 12 is mounted onto the common
rail pipe 12, and the sensor 17 is electrically connected to the ECU. A plurality
of flow limiting valve components 13 are mounted onto the common rail pipe 12, and
each of the flow limiting valve components 13 is connected to one of electronic control
fuel injectors 15 via one of fourth high-pressure fuel pipes 14. The flow limiting
valve component 13 is configured to be closed when a fuel pressure difference between
the fourth high-pressure fuel pipe 14 and the common rail pipe 12 exceeds a set pressure
difference. The flow limiting valve component 13 is mounted onto the common rail pipe
12 and has an outlet connected to an electronic control fuel injector 15 via a corresponding
fourth high-pressure fuel pipe 14. Each cylinder of the low-speed engine has multiple
fuel injectors, and each of the fuel injectors is provided with an independent flow
limiting valve component 13. When the fourth high-pressure fuel pipe 14 is broken
or fuel is abnormally injected from the electronic control fuel injector 15, the flow
limiting valve component 13 cuts off the introduction of the high-pressure fuel to
the electronic control fuel injector 15, thereby achieving the effect of protecting
the low-speed engine and improving its safety. The fourth high-pressure fuel pipe
14 is designed with double walls. High-pressure abnormal leakages from all the double-layered
fourth high-pressure fuel pipes 14 communicate with high-pressure abnormal leakages
from the components connected thereto such that a fuel return system for the high-pressure
abnormal leakage is formed.
[0041] In the field of diesel engines, diesel engines may generally be divided into medium-
and high-speed engines and low-speed engines according to their working rotational
speed ranges. The low-speed diesel engines are often used for directly driving propellers.
Diesel engines are required to have lower rotational speeds in order to allow the
propellers to have high propulsion efficiency. Therefore, the low-speed engines are
often used as power for various types of ships. Furthermore, heavy fuel is widely
used as fuel in the low-speed diesel engines. In the field of marine engines, the
engines are generally divided, according to the rotational speeds of the engines,
into high-speed engines with a rotational speed range above 3,000 rpm, medium-speed
engines at 1,500 to 3,000 rpm, and low-speed engines below 1,500 rpm.
[0042] A pressure limiting valve component 18 is further mounted onto the common rail pipe
12. The pressure limiting valve component 18 is configured to be opened when the fuel
pressure in the common rail pipe 12 exceeds a first set pressure value, so that the
fuel pressure in the common rail pipe 12 is stabilized to a target pressure value.
The pressure limiting valve component 18 is mounted onto the common rail pipe 12,
and the pressure limiting valve component 18 employs a mechanical structure and has
the ability to maintain an operation under fault pressure after it is opened at certain
pressure. In an optional embodiment, when the pressure in the system exceeds 125 MPa,
the pressure limiting valve component 18 is automatically opened and changed into
a fault mode, so as to keep the system operating safely at the pressure required in
the fault mode.
[0043] The first distribution block 6 is equipped with a shut-off valve component 5 and
a safety valve component 7. The shut-off valve component 5 is configured to perform
a process of relieving pressure from the first high-pressure fuel pipe 3 according
to a second instruction from the ECU. The safety valve component 7 is configured to
be opened when the shut-off valve component 5 and the pressure limiting valve component
18 malfunction and the fuel pressure in the common rail pipe 12 exceeds a second set
pressure value. The shut-off valve component 5 employs an air-controlled structure
and is mounted onto the first distribution block 6 to facilitate rapid relief of pressure
from the system. When the low-speed engine or the fuel system needs to be stopped
emergently in an emergency, the shut-off valve component 5 is quickly opened as a
secondary pressure protection measure to quickly relieve pressure from the system.
The shut-off valve component 5 employs an independent fuel return structure, which
is separated from the fuel return system for the high-pressure abnormal leakage. The
safety valve component 7 employs a mechanical structure and is mounted onto the first
distribution block 6. It is opened at a pressure of preferably 150 MPa, and in general,
it is opened at a pressure ranging from 150 MPa to 155 MPa. When the system is out
of control and both the shut-off valve component 5 and the pressure limiting valve
component 18 malfunction, the safety valve component 7 is opened as the secondary
protector to ensure the safety of the entire system.
[0044] Circulation valve components 16 are further mounted onto the common rail pipe 12
and the electronic control fuel injectors 15. The circulation valve components 16
are configured to be opened when the low-speed engine is stopped, so that a circulation
loop is formed between the fuel tank of the low-speed engine and the common rail pipe
12, and between the fuel tank of the low-speed engine and each of the electronic control
fuel injectors 15, respectively. The circulation valve components 16 are mounted onto
the end cover 122 and onto the respective electronic control fuel injectors 15, respectively.
When the low-speed engine is started, there is no fuel in the common rail pipe 12
and in the respective electronic control fuel injectors 15. At this time, the valve
core in each circulation valve component 16 is at the bottom dead center position,
and the circulation valve component 16 is in an open circulation state. In order to
allow the common rail system to quickly build up pressure and work, compressed air
is introduced into the circulation valve component 16, so that the circulation valve
component 16 quickly closes the system and starts to build up pressure. When the pressure
exceeds a preload force on the spring of the circulation valve component 16, the circulation
valve is closed mainly by fuel pressure. When the low-speed engine is stopped, the
system pressure is reduced by the shut-off valve component 5, and then the circulation
valve component 16 automatically opens to achieve the low-pressure automatic circulation
function and ensure the safety of the heavy fuel in the system. After the low-speed
engine is stopped to relieve pressure, the circulation valve component 16 is opened.
Considering that the heavy fuel in the system which is cooled and solidified may corrode
the parts of the system and hence reduce the service life of the parts, the system
is brought into a low-pressure circulation mode at this time. Low-pressure fuel enters
the common rail pipe 12 through the first high-pressure fuel pipe 3, the second high-pressure
fuel pipe 8, and the third high-pressure fuel pipe 10, and then the fuel is divided
into two branches. One of the branches flows to the fuel tank from the circulation
valve component 16 mounted onto the end cover 122. The other branch enters the electronic
control fuel injector 15 through the flow limiting valve component 13 and flows out
to the fuel tank through the circulation valve component 16 mounted to the electronic
control fuel injector 15. The flow area provided in the circulation valve component
16 on the end cover 122 must be smaller than the flow area of the circulation valve
component 16 on the electronic control fuel injector 15. If the flow area of the circulation
valve component 16 on the end cover does not match the flow area of the circulation
valve component on the electronic control fuel injector 15, the low-pressure fuel
will flow out from the circulation valve component 16 at the end cover 122, while
no fuel flows out from the circulation valve component 16 of the electronic control
fuel injector 15 and the fuel circulation therethrough cannot be achieved. Therefore,
it is important to match the sizes of the flow areas of the two circulation valve
components 16. The flow area of each of the circulation valve components 16 is determined
by the lift of the valve core.
[0045] In the fuel return system for the high-pressure abnormal leakage of the entire common
rail system, the electronic control fuel injector 15, the fourth high-pressure fuel
pipe 14, the flow limiting valve component 13, the common rail pipe 12, the fuel inlet
end cap 121, the third high-pressure fuel pipe 10, the second distribution block 9,
the second high-pressure fuel pipe 8, the first distribution block 6, the first high-pressure
fuel pipe 3, and the electronic control high-pressure fuel pump 1 communicate with
one another, and the fuel is returned from the leakage outlet of the most-downstream
electronic control high-pressure fuel pump 1.
[0046] Referring to FIGS. 2 and 3, the electronic control high-pressure fuel pump 1 is a
marine single-piece high-pressure fuel pump. The fuel pump specifically comprises:
a pump body 101, provided with a central hole along its axial direction; a pump cover
102, mounted to an upper end surface of the pump body 101; and a fuel inlet and outlet
valve component 103, a plunger and barrel assembly 104, a plunger spring 105, a lower
spring seat component 106, and a guide piston component 107, each of which is assembled
in the central hole of the pump body 101. The electronic control proportional valve
2 is assembled on a side of the pump body 101. The fuel inlet and outlet valve component
103 comprises a fuel inlet valve component 1031 and a fuel outlet valve component
1032. The fuel inlet valve component 1031 comprises a fuel inlet valve seat 10311,
a fuel inlet valve 10312, and a fuel inlet valve spring 10313. The fuel inlet valve
10312 is mounted in a central hole of the fuel inlet valve seat 10311. The fuel inlet
valve spring 10313 is positionally limited between the fuel inlet valve 10312 and
a wall of the hole of the fuel inlet valve seat 10311. A conical seal is formed between
the fuel inlet valve 10312 and the fuel inlet valve seat 10311 by being pressed against
each other by the fuel inlet valve spring 10313. The fuel outlet valve component 1032
comprises a fuel outlet valve seat 10321, a fuel outlet valve 10322, a fuel outlet
valve spring 10323, and a fuel outlet valve spring seat 10324. The fuel outlet valve
spring seat 10324 is mounted at an upper end of the fuel outlet valve seat 10321.
The fuel outlet valve 10322 is mounted in a central hole of the fuel outlet valve
seat 10321. The fuel outlet valve spring 10323 is positionally limited between the
fuel outlet valve 10322 and the fuel outlet valve spring seat 10324. A conical seal
is formed between the fuel outlet valve 10322 and the fuel outlet valve seat 10321
by being pressed against each other by the fuel outlet valve spring 10323. A high-pressure
fuel outlet chamber 1033 is formed between the fuel outlet valve seat 10321 and the
fuel inlet valve seat 10311. A high-pressure fuel chamber 1041 is formed in the plunger
and barrel assembly 104, and the high-pressure fuel chamber 1041 communicates with
the high-pressure fuel outlet chamber 1033 via a fuel hole in the fuel inlet valve
seat 10311. The electronic control proportional valve 2 communicates with the fuel
inlet hole of the fuel inlet valve seat 10311 via a first fuel hole in the pump body
101, and the fuel inlet hole is communicated with or disconnected from the high-pressure
fuel chamber 1041. The electronic control proportional valve 2 is provided with a
cooling circulation fuel passage, and cooling fuel from a cooling fuel passage of
the pump body 101 is injected into the cooling circulation fuel passage and then flows
back into the cooling fuel passage of the pump body 101.
[0047] As shown in FIGS. 2 and 3, the central hole provided in the pump body 101 is a through
hole penetrating the upper and lower end surfaces of the pump body 101. The pump cover
102 is fixed to the upper end surface of the pump body 101. A mounting hole corresponding
to the central hole of the pump body 101 is provided in the direction of the pump
cover 102 facing the pump body 101. The fuel outlet valve seat 10321 is mounted in
the central hole of the pump body 101 and in the mounting hole of the pump body 101.
It can be seen from FIG. 2 that the fuel outlet valve component 1032 is mounted above
the fuel inlet valve component 1031, and the upper part of the pump cover 102 has
a fuel passage communicating with the fuel outlet valve component 1032. Finally, the
high-pressure heavy fuel pumped from the high-pressure fuel pump of the present disclosure
is discharged through the fuel passage in the pump cover 102.
[0048] In the description of the present disclosure, it should be noted that orientation
or positional relationships indicated by the terms such as "up", "down", "left", "right",
"vertical", "horizontal", "inside", and "outside" in the specification of the present
disclosure are the orientation or positional relationships shown based on the drawings,
and these terms are intended only to facilitate the description of the present disclosure
and simplify the description, but not intended to indicate or imply that the referred
devices or elements must be in a particular orientation, or constructed or operated
in the particular orientation, and therefore should not be construed as limiting the
present disclosure.
[0049] The electronic control proportional valve 2, which is a hydraulic control device,
has the effect of throttling a flow of fuel to be fed. The electronic control proportional
valve 2 is mainly used for regulating feed of a light fuel (such as gasoline or light
diesel) or the like. In the prior art, there is no scheme to use the electronic control
proportional valve 2 in the regulation of feed of a heavy fuel, because the heavy
fuel may reach a temperature up to 160 ºC during working, which has exceeded the limit
working temperatures of electronically controlled elements such as armatures and coils
of the prior electronic control proportional valves 2. In the prior art, a traditional
mechanical design is employed for throttling adjustment for the feed of a heavy fuel
to the high-pressure fuel pump. In other words, the fuel quantity is controlled by
a governor and a spiral groove in the upper part of the plunger. Such fuel feed adjustment
method is disadvantageous, for example, in that the fuel quantity is adjusted with
low accuracy and is adjusted and controlled in slow response, and the magnitude of
the fuel quantity is dependent on the rotational speed of the governor.
[0050] In an embodiment of the present disclosure, the problems of insufficient flexibility
and high temperature in the prior mechanical adjustment method can be solved by adjusting
feed of the heavy fuel using the electronic control proportional valve 2. In view
of this, a cooling circulating fuel passage is provided inside the electronic control
proportional valve 2, through which the cooling fuel flowing in the pump body 101
enters the electronic control proportional valve 2, so as to cool the electronically
controlled elements in the electronic control proportional valve 2 in a targeted manner,
so that the electronically controlled elements of the electronic control proportional
valve 2 are maintained within the normal temperature range. The cooling circulation
fuel passage designed in the electronic control proportional valve 2 should meet the
following requirements: (1) the cooling circulation fuel passage should be as close
as possible to the electronically controlled elements such as a coil and an armature
of the electronic control proportional valve; (2) the flow of the cooling fuel introduced
into the cooling circulation fuel passage should enable the temperatures of the electronically
controlled elements such as the coil and the armature to be reduced within the working
temperature range. In order to enable the cooling circulation fuel passage to meet
the requirements, it is necessary to perform simulation calculations and experiments
for different types of armatures in advance to determine the specific parametric information
such as the spatial arrangement and size of the cooling circulation fuel passage in
each type. Here, the simulation calculations and experiments for different types of
armatures may be performed with reference to the methods in the prior art and therefore
will not be described in detail here. The above-mentioned design is advantageous in
that the temperatures of the armature and the coil of the electronic control proportional
valve 2 in the working state are reduced by the cooling circulation fuel passage provided
in the electronic control proportional valve 2, so that the electronically controlled
elements work in the normal temperature range, thereby permitting the use of the electronic
control proportional valve 2 for throttling the feed of fuel to the pump. The disadvantages
of the mechanical fuel quantity adjustment are overcome by using the electronic control
proportional valve 2, and the fuel supply flow is adjusted with increased accuracy,
flexibility, and response speed, thereby achieving a more accurate match between the
fuel supply quantity from the pump and the working condition of the diesel engine.
Thus, the performance degradation caused by insufficient fuel supply is avoided. Also,
an excess flow is reduced during working, thereby reducing the actual load on the
pump.
[0051] As shown in FIG. 3, in the fuel feeding stage, the fuel inlet valve 10312 is configured
to be opened under the action of the fuel feed pressure from the electronic control
proportional valve 2, and the fuel outlet valve 10322 is configured to be sealed to
the fuel outlet valve seat 10321 under the action of the back pressure from the fuel
flow flowing out therethrough. The electronic control proportional valve 2 for feeding
a low-pressure heavy fuel starts charging the fuel into the high-pressure fuel chamber
1041 from the fuel inlet hole. The quantity of fuel to be fed is controlled by adjusting
the opening degree of the electronic control proportional valve 2, so as to meet the
requirements in different working conditions of the high-pressure fuel pump. Here,
in the fuel pumping stage, the guide piston component 107 moves upward, the plunger
1043 compresses the heavy fuel in the high-pressure fuel chamber 1041, and thus the
pressure of the heavy fuel gradually increases. When the fuel pressure in the high-pressure
fuel chamber 1041 is greater than the fuel feed pressure, the fuel inlet valve 10312
is closed. Because the high-pressure fuel outlet chamber 1033 is connected to the
high-pressure fuel chamber 1041, when the fuel pressure in the high-pressure fuel
chamber 1041 exceeds the back pressure and a spring force exerted on the fuel outlet
valve, the fuel outlet valve 10322 is opened, and the high-pressure fuel is discharged
from the central hole of the pump cover 102 through the fuel outlet valve spring seat
10324. FIG. 4 shows the structure of the plunger and barrel assembly in the prior
art. As shown in FIG. 4, the heavy fuel pump for the high-pressure common rail system
in the prior art employs a mechanical design. A fuel inlet conduit 505 is provided
in the plunger barrel 1042, the plunger 1043 is slidably inserted into the plunger
barrel 1042, and no fuel inlet valve component is disposed. During working, when the
fuel is sucked and compressed alternately, part of the pressurized fuel will flow
from the fuel inlet conduit 505 back to the low-pressure fuel inlet passage, which
will result in a large change in pressure in the fuel inlet conduit 505. As a result,
cavitation erosion is likely to occur at the related position(s) in the fuel inlet
conduit 505. This is also one of the main forms of damage of the plunger and barrel
assemblies which have been observed and recorded in the actual experiments for ships.
Compared with the structure of the high-pressure fuel pump in the prior art, the fuel
inlet valve component 1031 is additionally provided in the high-pressure fuel pump
1 in the present disclosure, so that when the high-pressure fuel chamber of the plunger
barrel 1042 is changed from the fuel suction state to the fuel compression state,
the fuel inlet valve component is quickly closed to ensure stable pressure at the
related position(s) in the fuel inlet passage of the fuel inlet valve seat 10311,
thereby effectively preventing cavitation erosion.
[0052] FIG. 5 shows the fitting relationship between the plunger and barrel assembly 104
and the pump body 101, and between the fuel inlet valve seat 10311 and the upper spring
seat 109. Referring to FIG. 5, the plunger and barrel assembly 104 comprises: a plunger
barrel 1042, provided in the lower end of the fuel inlet valve seat 10311; and a plunger
1043, slidably inserted into the central hole of the plunger barrel 1042. The high-pressure
fuel chamber 1041 is formed by the plunger barrel 1042, the plunger 1043, together
with the fuel inlet valve seat 10311. The inner wall of the plunger barrel 1042 is
provided with a first annular groove 10421 and a second annular groove 10422. The
pump body 101 is provided with a mixed oil outlet passage (not shown in the drawings)
and a lubricating oil supply passage 1012. The mixed oil outlet passage communicates
with the first annular groove 10421 via a mixed oil passage 10423 in the plunger barrel
1042. The mixed oil formed at the first annular groove 10421 flows out to a waste
oil tank (not shown in the drawings) through the mixed oil outlet passage and through
the mixed oil passage 10423. The lubricating oil supply passage 1012 communicates
with the second annular groove 10422 via a lubricating oil passage 10424 in the plunger
barrel 1042. The first annular groove 10421 is located above the second annular groove
10422. The lubricating oil entering the second annular groove 10422 includes the following
functions. (1) It has the effect of isolating the fuel entering the gap between the
plunger 1043 and the plunger barrel 1042, from the high-pressure fuel chamber 1041
above the plunger 1043, thereby preventing flow of the fuel into the transmission
parts under the plunger 1043 to avoid contamination of the lubricating oil system
of the whole machine by the fuel intruding into the transmission parts under the plunger
1043. (2) It allows all the friction surfaces under the plunger 1043 to be in a state
of being lubricated by clean lubricating oil, thereby improving the friction state
of the plunger 1043. The lubricating oil is cleaner than the heavy fuel above thereof,
and the lubricating oil contains an additive for improving friction and can form a
better oil film than lubrication by the heavy fuel.
[0053] The low-speed engine in the prior art permits the heavy fuel to leak below the plunger
1043, and then the leaked heavy fuel is collected separately. However, the leaked
heavy fuel has the risk of corroding the plunger spring 105 and other parts under
the plunger 1043. In the high-pressure fuel pump 1 of the present disclosure, the
leakage of the heavy fuel can be completely prevented by using a small amount of lubricating
oil in the second annular groove 10422 of the plunger barrel 1042 of the plunger and
barrel assembly 104, which prevents corrosion of important parts such as the plunger
spring 105 under the plunger barrel 1042 by the leaked heavy fuel. Furthermore, because
the guide piston under the plunger of the low-speed engine in the prior art is provided
with a complicated dynamic sealing mechanism, the high-pressure fuel pump has drawbacks
such as having a larger overall vertical height and high cost. In the high-pressure
fuel pump 1 of the present disclosure, the vertical height of the guide piston 1071
can be effectively shortened by sealing the heavy fuel with a small amount of lubricating
oil (the traditional heavy fuel guide piston has a long heavy fuel sealing section),
so that the vertical height of the pump of the high-pressure fuel pump is reduced,
and the overall weight of the high-pressure fuel pump is reduced. It is experimentally
known that the vertical height of the high-pressure fuel pump in the technical solution
of the present disclosure is reduced by 1/3, as compared with the high-pressure fuel
pump of the low-speed engine in the prior art.
[0054] Referring to FIG. 2 and FIGS. 7 to 14, the lower spring seat component 106 is disposed
under the plunger and barrel assembly 104. The lower spring seat component 106 comprises:
an outer spring seat 1061, having a boss-type structure thinner on the outside and
thicker in the middle as a whole. The outer spring seat 1061 is mainly subjected to
a pressure transmitted from the plunger 1043 to the upper sphere during working. The
pressure results in a stress field distributed in a tapered shape in the outer spring
seat 1061. The outer spring seat 1061 is provided in a boss shape corresponding thereto,
so that the mass of the outer spring seat 1061 can be reduced on the premise of having
satisfactory strength, thereby reducing the mass of the outer spring seat 1061 in
movement. The thicker part in the middle of the boss also provides space for designing
a spherical surface and a fuel passage in its middle.
[0055] The upper end surface of the outer spring seat 1061 is provided with a third counterbore
10611 with a concave spherical surface. The lower spring seat component 106 further
comprises an upper sphere 1062. The lower part of the upper sphere 1062 is mounted
in the third counterbore 10611, and the lower end surface of the upper sphere 1062
is provided with a convex spherical surface mating with the concave spherical surface.
[0056] The lower spring seat component further comprises an inner spring seat 1063, sleeved
on the upper part of the upper sphere 1062. The inner spring seat 1063 has a first
axial through hole 10631 penetrating its upper and lower end surfaces.
[0057] The lower cylindrical head 10431 of the plunger 1043 is positionally limited in the
first axial through hole 10631, and the lower cylindrical head 10431 of the plunger
1043 has a lower end surface abutting against the upper end surface of the upper sphere
1062. As experimentally known, when the plunger 1043 is working, a flat surface at
the tail of the plunger 1043 may be partially subjected to an excessively large force
when being pressed (as shown in FIG. 6, an angle with a degree of β is formed between
the upper sphere 1062 and the plunger 1043 in FIG. 6), because of an error in parallelism
between the flat surface at the tail thereof and a corresponding surface against which
it is pressed (a surface of the guide piston or the spring seat). The uneven force
distribution will create an additional moment of force on the plunger 1043, which
will cause additional load and energy loss to the system, thereby affecting the dynamic
characteristics of the system. When the lower spring seat component 106 with a spherical
surface is disposed between the plunger 1043 and the guide piston 1071, even if there
is a large parallelism error between the upper end surface of the guide piston 1071
and the end surface at the tail of the plunger 1043, the angle can be automatically
adjusted by the spherical surface, so that the contact surfaces between the upper
sphere 1062 and the plunger 1043 are kept in full contact with each other (the state
of FIG. 6 is changed to the state of FIG. 7, in FIG. 7, the two contact surfaces of
the upper sphere 1062 and the plunger 1043 are attached to each other). In this way,
partial contact is eliminated, the overall force application is balanced, and the
tendency of excessive local stress is alleviated. Moreover, a supporting force exerted
on the plunger 1043 by the upper sphere 1062 passes through the center of the spherical
surface, to eliminate the additional bending moment, thereby optimizing the dynamic
characteristics and improving the load-bearing capacity of the system.
[0058] Optionally, referring to FIGS. 9 to 14, a spherical hole 10612 is provided at the
center of the third counterbore 10611, a third annular groove 10613 is provided in
the lower end surface of the outer spring seat 1061, and the spherical hole 10612
communicates with the third annular groove 10613 via a lubricating oil inlet conduit
10614. The lubricating oil inlet conduit 10614 communicates with a piston oil passage
in the guide piston 1071. The lubricating oil passing through the lubricating oil
inlet conduit 10614 forms an oil film at the concave spherical surface of the outer
spring seat 1061, which can effectively prevent fretting damage between the convex
spherical surface of the upper sphere 1062 and the concave spherical surface of the
outer spring seat 1061. The spherical hole 10612 supplies the lubricating oil to the
spherical surfaces for lubricating the spherical surfaces. The lubricating oil creates
an elastohydrodynamic lubrication effect on the spherical surfaces, so as to reduce
the wear rate, reduce contact stress, reduce fretting damage, and increase the load-bearing
capacity and fatigue strength of the spherical surfaces.
[0059] As shown in FIG. 9, the outer surface of the outer spring seat 1061 is formed as
a tapered surface, which is provided with a lubricating oil outlet passage 10615.
The lubricating oil outlet passage 10615 communicates with the lower end surface of
the outer spring seat 1061. The lubricating oil outlet passage 10615 is provided obliquely
relative to the bottom surface of the outer spring seat 1061. The lubricating oil
outlet passage 10615 can communicate the regions above and below the outer spring
seat 1061 with each other, so that the lubricating oil upstream of the outer spring
seat 1061 smoothly flows downward, to prevent additional load caused by compression
of the lubricating oil upon the lubricating oil chamber above the outer spring seat
1061 is filled with the lubricating oil. The lubricating oil outlet passage 10615
is provided in the outer tapered surface of the outer spring seat 1061, which can
avoid blockage of the flow area of the lubricating oil outlet passage 10615 by the
plunger spring 105, so that the flow area is not affected by the position of the plunger
spring 105.
[0060] Optionally, as shown in FIG. 10, eight lubricating oil outlet passages 10615 may
be provided. The eight lubricating oil outlet passages 10615 communicate to the bottom
end surface of the outer spring seat 1061, respectively, so that it can be ensured
that the lubricating oil can smoothly flow out from the space above the outer spring
seat 1061 to avoid additional load caused by the accumulation of the lubricating oil.
Moreover, the lubricating oil outlet passages 10615 are provided obliquely in the
tapered surface of the outer spring seat 1061, which also prevents the unsmooth flow
and hence accumulation of the lubricating oil caused by blockage of the lubricating
oil outlet passages 10615 by the plunger spring 105. As shown in FIG. 12, a circumferential
annular groove 10621 is provided in the circumferential direction of the upper sphere
1062. As shown in FIG. 13, a positioning pin 1064 is mounted in the circumferential
annular groove 10621 through a positioning pin hole 10616 of the outer spring seat
1061. Here, the spacing between the upper and lower surfaces of the circumferential
annular groove 10621 is larger than the cylindrical diameter of a part of the positioning
pin 1064 that is located in the circumferential annular groove 10621. Optionally,
the upper sphere 1062 and the outer spring seat 1061 are connected by using a threaded
positioning pin 1064. The positioning pin 1064 is fixed to the outer spring seat 1061
by means of threads, and the head of the positioning pin 1064 is provided as a cylindrical
surface and serves as a positioning part. Optionally, the upper sphere 1062 is provided
with a corresponding circumferential annular groove 10621, in which the head of the
positioning pin 1064 is mounted. The circumferential annular groove 10621 in the upper
sphere 1062 may also be replaced with a round hole. The positioning pin 1064 can substantially
position the upper sphere 1062 and the outer spring seat 1061, so as to prevent the
upper sphere 1062 from being detached from the outer spring seat 1061 during reciprocating
movement when the plunger 1043 is separated from the upper sphere 1062.
[0061] Optionally, as shown in FIG. 11, the first axial through hole 10631 provided inside
the inner spring seat 1063 comprises: a seventh hole 10632, an eighth hole 10633,
and a ninth hole 10634 having diameters gradually increasing from top to bottom. A
first guide hole 10635 having a diameter gradually increasing from top to bottom in
the vertical direction is provided between the eighth hole 10633 and the ninth hole
10634. A second guide hole 10636 having a diameter gradually increasing from top to
bottom in the vertical direction is provided on a side of the ninth hole 10634 facing
the upper sphere 1062. The walls of the first guide hole 10635 and the second guide
hole 10636 are formed as tapered guide surfaces 10637. The upper part of the upper
sphere 1062 is positioned partially in the ninth hole 10634 through the second guide
hole 10636. Here, as shown in FIG. 9, the upper end surface of the lower cylindrical
head 10431 of the plunger 1043 abuts against the upper end surface of the eighth hole
10633. The wall of the eighth hole 10633 is attached to the lower cylindrical head
10431 of the plunger 1043 in an annular surface. As shown in FIG. 9, the walls of
the first guide hole 10635 and the second guide hole 10636 are formed as tapered guide
surfaces 10637. Therefore, if the plunger 1043 and the upper sphere 1062 are separated
or the inner spring seat 1063 and the plunger 1043 are separated, when the plunger
1043 impacts on the upper sphere 1062 again, the tapered guide surfaces 10637 will
automatically align the plunger 1043 with the upper sphere 1062, align the plunger
1043 with the inner spring seat 1063, and align the inner spring seat 1063 with the
upper sphere 1062, so as to prevent a large angular deviation and radial displacement
between the plunger 1043 and the inner spring seat 1063 and between the inner spring
seat 1063 and the upper sphere 1062. Thus, it can be ensured that the system is in
a proper position even when an impact occurs, so that the overall force application
is balanced. Specifically, when the plunger 1043 is jammed, the inner spring seat
1063 is relatively stationary (i.e., jammed at the top dead center), and the outer
spring seat 1061 and the upper sphere 1062 will impact thereon up and down. The inner
spring seat 1063 and the plunger 1043 may not be centered relative to the upper sphere
1062 during impact, which may cause a force to be applied locally during the impact.
The inner spring seat 1063 is provided with the tapered guide surfaces 10637, which
can improve the centering of the spring seat 1063 and the plunger 1043 relative to
the upper sphere 1062. Even when an impact occurs, the inner spring seat 1063 and
the upper sphere 1062 can be automatically aligned with each other to improve the
tendency of uneven force application.
[0062] Optionally, there is a gap greater than or equal to 1 mm between the upper sphere
1062 and the ninth hole 10634. Optionally, there is a gap of 1 mm between the outer
cylindrical surface of the upper sphere 1062 and the wall of the ninth hole 10634.
The outer spring seat 1061 and the upper sphere 1062 are fitted to each other at their
spherical surfaces and have a relatively large gap (of the order of millimeter) and
thus are freely slidable relative to each other. Therefore, during the working process
of the plunger 1043, if there is an angular error between the lower end surface of
the lower cylindrical head 10431 of the plunger 1043 and the upper end surface of
the upper sphere 1062, when the plunger 1043 moves downward and impacts on the upper
sphere 1062, the upper sphere 1062 will slide relative to the outer spring seat 1061
to automatically compensate for the angular error. In this way, when additional load
is applied to the plunger 1043, the force is uniformly applied to the lower end surface
of the lower cylindrical head 10431 of the plunger 1043 and to the upper end surface
of the guide piston 1071, whereby excessive local stress can be effectively prevented.
[0063] Optionally, there is a gap greater than or equal to 1 mm between the third counterbore
10611 and the upper sphere 1062. Optionally, there is a gap of 1 mm between the outer
cylindrical surface of the upper sphere 1062 and the cylindrical surface of the third
counterbore 10611. In other words, there is a relatively large gap (of 1 mm) between
the upper sphere 1062 and the inner spring seat 1063, and there is a relatively large
gap (of 1 mm) between the positioning pin 1064 and the upper sphere 1062, between
the positioning pin 1064 and the outer spring seat 1061, and between the upper sphere
1062 and the inner spring seat 1063, respectively. Thus, it is ensured that effective
degrees of freedom of rotation of the upper sphere 1062 will not be restricted by
the positioning pin 1064 during its radial movement, and effective degrees of freedom
of rotation of the plunger 1043 and the upper sphere 1062 will not be restricted by
the inner spring seat 1063 during their radial movements, which prevents additional
radial load on the plunger 1043.
[0064] Optionally, there are gaps of the order of millimeter between the upper sphere 1062
and the ninth hole 10634 and between the third counterbore 10611 and the upper sphere
1062, respectively. The upper sphere 1062 is permitted to have a macroscopic angular
error relative to the outer spring seat 1061, thereby achieving the technical effects
of preventing jamming of the spherical surfaces, eliminating partial contact, balancing
the overall force application, and alleviating the tendency of excessive local stress.
Furthermore, as shown in FIG. 11, optionally, relief grooves 10638 are formed in both
the outer circumferential surface of the inner spring seat 1063 and the wall of the
eighth hole 10633. An annular weight-reducing groove 10639 is provided around the
central axis of the inner spring seat 1063, in the upper end surface of the inner
spring seat 1063.
[0065] Referring to FIG. 2, the high-pressure fuel pump 1 in the present disclosure further
comprises: an upper spring seat 109, sleeved on the plunger barrel 1042 and located
at the upper end of the inner spring seat 1063. The plunger spring 105 comprises:
a first plunger spring 1051, compressively mounted between the upper spring seat 109
and the outer spring seat 1061; and a second plunger spring 1052, compressively mounted
between the upper spring seat 109 and the inner spring seat 1063. Optionally, the
diameters of the concave spherical surface in the outer spring seat 1061 and the convex
spherical surface of the upper sphere 1062 are each 20 to 100 times the diameter of
the plunger 1043. There is a parallelism error of low order of magnitude, generally
of the order of magnitude of 0.01 mm, between the tail of the plunger 1043 and the
upper end surface of the guide piston 1071, which has low requirements for angle adjustability
of the spherical surfaces. Therefore, spherical surface adjustment at a small angle
can also meet the angle adjustment requirements. When the concave spherical surface
in the outer spring seat 1061 and the convex spherical surface of the upper sphere
1062 are relatively large, only a small part of forces acting on the two surfaces
when being pressed is transformed into tensile stress. A metal material generally
has higher compressive strength than tensile strength, and the compressive stress
is not likely to cause fatigue. Therefore, the proportion of tensile stress can be
reduced by choosing a large spherical surface, so as to increase the load-bearing
capacity and fatigue strength of the material.
[0066] Optionally, referring to FIGS. 15 to 21, the guide piston component 107 comprises:
a guide piston 1071, provided with a first mounting hole 10711 at a central location
of its upper end surface and provided with a second mounting hole 10712 at its lower
end surface, wherein the first mounting hole 10711 and the second mounting hole 10712
communicate with each other via a communicating hole 10713, and the lower spring seat
component 106 is mounted in the first mounting hole 10711; a roller component 1072,
including a roller 10728 mounted in the second mounting hole 10712, a roller bushing
10722 interference-fitted in the roller 10728, and thrust bearings 10723 interference-fitted
at both ends of the roller 10728 in its axial direction, wherein an annular groove
10724 is provided in the axial direction of the roller 10728, and an arc-shaped transitional
connection is formed between the bottom of the annular groove 10724 and an end surface
of the roller 10728 in the axial direction; and a roller pin 1073, fitted with a clearance
in the roller bushing 10722. A boss 10714 is disposed protruding from a wall of the
second mounting hole 10712, and the boss 10714 is in contact with the thrust bearing
10723. A plurality of first radial oil grooves 10715 are uniformly arranged in the
boss 10714 along its radial direction, and the first radial oil grooves 10715 are
provided with respect to the thrust bearing 10723. Optionally, four first radial oil
grooves 10715 may be provided.
[0067] The roller bushing 10722, the thrust bearing 10723, and the roller 10728 are interference-fitted
to one another, so as to reduce movable surfaces and to increase the movement speeds
of friction surfaces among the three parts. According to the theory of dynamic pressure
lubrication, a friction coefficient decreases within a certain range as a relative
movement speed between the friction surfaces increases. Therefore, the effect of dynamic
pressure lubrication can be enhanced by increasing the relative movement speed, so
that a thicker dynamic pressure oil film is formed between the corresponding friction
surfaces, to avoid contact of solids and to reduce the friction coefficient and abrasion.
[0068] The following effects can be achieved by providing the communicating hole. (1) When
the lubricating oil upstream of the guide piston 1071 is flowing down from the communicating
hole 10713, the lubricating oil is evenly distributed in the middle right above the
second mounting hole 10712 of the roller 10728, the lubricating oil is evenly distributed
on generatrix of the roller 10728, and the lubricating oil is distributed on the surface
of the roller 10728 without being affected by the forward or reverse rotation (namely,
the lubricating oil can be evenly distributed on the surface of the roller 10728 regardless
of the forward or reverse rotation of the roller 10728). (2) The vertical force distribution
on the guide piston 1071 is improved. In other words, the pressure from the plunger
1043 is distributed onto thicker positions around the communicating hole 10713. In
this way, the overall force application is balanced, the maximum stress is reduced,
and the load-bearing capacity and reliability of the system are increased. In the
guide piston in the prior art, the communicating hole is provided around the center
of the guide piston, and the communicating hole is at a physical position which is
thinner and subjected to larger stress. (3) In the pump assembly, when the guide piston
1071 is fitted with the outer spring seat 1061, the lubricating oil outlet passage
10615 of the outer spring seat 1061 communicates with the plunger and barrel assembly
104, so that the lubricating oil leaking from the upper part of the plunger and barrel
assembly 104 can be discharged therethrough, thereby increasing the actual area of
flow of the lubricating oil.
[0069] Optionally, the annular groove 10724 is formed by machining after the inner hole
and the outer cylindrical portion of the roller 10728 are accurately machined. As
shown in FIGS. 22 and 23, the annular groove 10724 is provided to reduce the rigidity
of both ends of the roller 10728. When the surface of the roller 10728 is subjected
to radial pressure, the roller 10728 may be automatically deformed in the vicinity
of the annular groove 10724. Moreover, after the annular groove 10724 is machined,
the outer cylindrical portion and the inner hole of the roller 10728 automatically
collapse, so that microscopic arcuate surfaces are formed at both ends of the inner
hole and the outer cylindrical portion of the roller 10728, to reduce the geometric
stress concentration at both ends of the roller 10728, thereby balancing the force
applied to the surface of the roller 10728. Here, the geometric stress concentration
herein means that contact stress at both ends of the generatrix of the roller 10728
is significantly greater than contact stress in the middle thereof when the surface
of the roller 10728 is stressed. The wall of the annular groove 10724 is formed in
an arcuate shape, which can effectively weaken the geometric stress concentration
at the outer cylindrical surface of the roller 10728 and the side pressure effect
of the inner hole of the roller 10728 during rotation of the roller 10728. This results
in a balanced stress distribution on the inner and outer working surfaces of the roller
component 1072, thereby reducing the probability of jamming between the roller component
1072 and the roller pin 1073. Here, the side pressure effect mentioned above specifically
refers to a phenomenon in which a shaft, fitted in a hole, is closer to one side of
the hole and farther away from the other side of the hole and thus exerts more force
on the side closer thereto and less force on the side farther away therefrom during
working, because there must be a certain angular error between the shaft and the hole
during working, namely, their axes are not parallel to each other.
[0070] A thrust bearing model is formed by the boss 10714 and a corresponding friction surface
(an end surface of the roller component 1072). In other words, the first radial oil
grooves 10715 are filled with lubricating oil to supply sufficient lubricating oil
to the moving surface (the end surface of the roller component 1072). A dynamic pressure
oil film is formed on the end surface of the roller 10728 with the speed of movement
of the end surface of the roller 10728, to separate the boss 10714 of the guide piston
1071 from the end surface of the roller component 1072, which can reduce wear and
reduce the friction coefficient. In the case where the first radial oil grooves 10715
are provided in the boss 10714 of the guide piston 1071, the guide piston 1071 will
not rotate relatively, high-pressure and low-pressure oil film regions are relatively
stationarily distributed on the friction surface, and thus the roller component 1072
is relatively stationary in the axial direction, as compared with a case where the
first radial oil grooves 10715 are provided in the roller component 1072. If the first
radial oil grooves 10715 are provided in a moving part (the end surface of the roller
component 1072), the relative movement of the first radial oil grooves 10715 relative
to the guide piston 1071 will result in a relative moving distribution of the oil
film, which will lead to an unnecessary additional vibration of the roller 10728 in
the axial direction and hence to reduced overall dynamic performance of the roller
component 1072.
[0071] With regard to the roller 10728, the roller 10728 is designed with end portions grooved
and deformed to reduce boundary stress. Specifically, during machining of the roller
10728, the outer cylindrical portion of the roller 10728 and the inner hole of the
roller 10728 are finished first, and then its two end surfaces in the axial direction
are grooved with the annular grooves 10724. After the grooving process is completed,
the generatrices of the outer cylindrical portion and the inner hole of the roller
10728 are naturally deformed into arcs, which can effectively weaken the geometric
stress concentration at the outer cylindrical surface of the roller and the side pressure
effect of the inner hole of the roller 10728 during rotation of the roller 10728.
This results in a balanced stress distribution on the inner and outer working surfaces
of the roller component 1072, thereby reducing the probability of jamming between
the roller component 1072 and the roller pin 1073. The roller bushing 10722 and the
roller 10728 are fitted in an interference fit manner, to increase the relative speed
of the moving surface of the roller bushing 10722 relative to the roller pin 1073.
The end surface of the roller bushing 10722 moves at a high speed so that an effective
dynamic pressure oil film is formed between it and the roller pin 1073, thereby improving
the dynamic pressure lubrication effect and reducing the probability of jamming between
the roller bushing 10722 and the roller pin 1073. The roller 10728 and the thrust
bearing 10723 are fitted in an interference fit manner, to increase the relative speed
of the moving surface of the thrust bearing 10723 relative to the boss 10714. The
end surface of the thrust bearing 10723 moves at a high speed so that an effective
dynamic pressure oil film is formed between it and the boss 10714, which can prevent
attachment of the boss 10714 to the thrust bearing 10723, so as to avoid excessive
wear of the end surface of the thrust bearing 10723 caused by insufficient oil supply
thereto. The dynamic pressure oil film is formed to improve the dynamic pressure lubrication
effect and to reduce the possibility of jamming between the thrust bearing 10723 and
the boss 10714.
[0072] Optionally, as shown in FIG. 19, the outer surface of the roller pin 1073 is provided
as a cylindrical surface, which is provided with first waist-shaped grooves 10731
and second waist-shaped grooves 10732 at its two positions, respectively. The first
waist-shaped grooves 10731 and the second waist-shaped grooves 10732 are provided
in the middle positions of the roller pin 1073, wherein the second waist-shaped groove
10732 is provided in the first waist-shaped groove 10731 and recessed inward relative
to the first waist-shaped groove 10731, and a stepped shape is formed by them together.
The first waist-shaped groove 10731 and the second waist-shaped groove 10732 each
are in an elongated shape. There is a large contact area between the lubricating oil
in the first waist-shaped groove 10731 and in the second waist-shaped groove 10732
and the corresponding friction surface. With full use of the moving speed of the corresponding
moving surface, more lubricating oil is brought onto the load-bearing surface to form
a dynamic pressure oil film, so as to form a thicker lubricating oil film. The two
edges of the first waist-shaped groove 10731 are provided in a waist shape to reduce
stress concentration caused by the groove provided in the surface of the roller pin
1073. The flow of the lubricating oil on the surface can be increased by providing
the first waist-shaped groove 10731 and the second waist-shaped groove 10732. Optionally,
a small-angle wedge-shaped groove with an angle ranging from 5° to 10° is formed between
the first waist-shaped groove 10731 located on an outer layer and the outer surface
of the roller bushing 10722, and a second oil hole 10733 is provided in each second
waist-shaped groove 10732 located in an inner layer. An angle of 70° to 120° (the
actual value may be determined according to the simulation calculation results and
may be selected to be 90° in an example) is formed between the two second waist-shaped
grooves in a plane perpendicular to the axial direction of the roller pin, and the
two second waist-shaped grooves are located directly above the pressure-bearing region.
This reduces the influence of the waist-shaped grooves provided in the surface on
the area of the pressure-bearing region while ensuring sufficient oil supply to the
friction surface, so that the pressure-bearing region has a larger angle, and the
oil film on the pressure-bearing region has a smaller average pressure. A small-angle
convergent wedge shape is formed between the first waist-shaped groove 10731 and the
corresponding friction surface, which strengthens the squeezing effect in dynamic
pressure lubrication. The second waist-shaped groove 10732 is mainly used for storing
more lubricating oil to ensure sufficient oil supply to the friction surface. Thus,
the lubrication of the surface of the roller pin will not be affected even if it is
supplied with the lubricating oil poorly for a short time, thereby reducing the probability
of jamming of the system when there is a problem in the lubrication system. The two
second oil holes 10733 at the two positions communicate with each other via a lubricating
oil outlet passage, and the two second oil holes 10733 are provided at an angle of
90°.
[0073] Optionally, as shown in FIGS. 17, 18, and 34, the outer surface of the guide piston
1071 is provided as a cylindrical surface, which is provided with a partial circumferential
oil groove 10729 and a circumferential oil groove 10725, a first axial oil groove
10716, and a vertical groove 10717. The vertical groove 10717 is provided in the circumferential
oil groove 10725, and the vertical groove 10717 communicates with the partial circumferential
oil groove 10729 via the first axial oil groove 10716. Chamfers of 1° to 10° are provided
between the upper and lower edges of the circumferential oil groove 10725 and the
upper and lower ends of the guide piston 1071, respectively. A small-angle convergent
wedge shape is formed between the chamfer and the corresponding moving surface during
movement, to strengthen the squeezing effect in dynamic pressure lubrication. This
improves the state of lubrication of the surface of the guide piston 1071, so that
a thicker dynamic pressure oil film is established to reduce friction and reduce the
probability of jamming. According to related data and experiments, when the chamfer
is too large (such as at 45° or 90°), the chamfer cannot enhance the lubrication,
but rather has a scraping effect on the corresponding friction surface and will scrap
off the lubricating oil from the surface, resulting in a reduced lubrication effect.
Referring to FIG. 16, optionally, the cylindrical surface is further provided with
an inclined hole 10718 having two ends communicating with the circumferential oil
groove 10725 and the inner wall of the second mounting hole 10712, respectively. Referring
to FIG. 18, optionally, the cylindrical surface is further provided with a second
axial oil groove 10719 communicating with the circumferential oil groove 10725. The
cylindrical surface is further provided with a first straight hole 10720 and a second
straight hole 10721 connected to each other, the first straight hole 10720 communicates
with the first axial oil groove 10716, and the second straight hole 10721 communicates
with the first mounting hole 10711. The first straight hole 10720 and the second straight
hole 10721 supply lubricating oil to the lower spring seat component 106 inside the
guide piston 1071, so as to reduce the wear of the corresponding moving surface. Referring
to FIG. 15, optionally, a lubricating oil inlet passage 10735 is provided in the outer
cylindrical surface of the roller pin 1073. The lubricating oil inlet passage 10735
is provided with respect to the inclined hole 10718, and the lubricating oil inlet
passage 10735 communicates with a lubricating oil outlet passage.
[0074] Optionally, the outer cylindrical surface of the roller pin 1073 is provided with
a DLC (Diamond-Like Carbon) coating. The DLC coating has the characteristics of high
hardness, low friction coefficient, wear resistance, and high temperature resistance.
When poor lubrication occurs between the roller bushing 10722 and the roller pin 1073,
a friction pair consisting of the DLC coating and the roller bushing 10722 made of
a copper alloy can still operate well, which can further reduce the probability of
jamming between the roller pin 1073 and the roller bushing 10722. The roller bushing
10722 is made of a copper alloy. The thrust bearing 10723 is made of a copper alloy.
Forced lubrication and dynamic pressure lubrication are used between the roller pin
1073 and the roller bushing 10722. Forced lubrication and dynamic pressure lubrication
are used between the thrust bearing 10723 and the boss 10714. The roller bushing 10722
and the thrust bearing 10723 are made of bronze alloy. The bronze alloy having a low
friction coefficient, good wear resistance, self-lubricating property and impact resistance
allows for improved friction characteristics when solid friction occurs between the
inner hole and end surfaces of the roller component 1072 and the corresponding moving
surfaces, and allows for a reduced friction coefficient, increased impact resistance,
and increased load-bearing capacity. It should be noted that the forced lubrication
is a lubrication mode, in which the pressure of the lubricating oil is forcibly increased
by an external force in order to establish a thicker lubricating film among contact
surfaces of the respective parts. The dynamic pressure lubrication is a lubrication
mode, in which the lubricating oil is brought onto a friction surface with the movement
of a moving surface to form a dynamic pressure oil film. In general, and at low speed,
the parts are forcibly lubricated mainly by using the pressure generated by the lubricating
oil pump. At high speed, the parts are lubricated mainly by using the dynamic pressure
oil film generated by the movement of the parts.
[0075] As shown in FIGS. 15, 16, 18, and 20, optionally, a first chamfer 10741 is provided
at each of the outer circumference of the upper end surface, the outer circumference
of the lower end surface, and the circumferential oil groove 10725 of the guide piston
1071. A second chamfer 10726 is provided in the wall of the first mounting hole 10711.
A tenth hole 10727 is provided in the wall of the second mounting hole 10712. An eleventh
hole 10736 is provided in the outer cylindrical surface of the roller pin 1073. A
return spring 10737 and a stop pin 10738 are sequentially placed in the eleventh hole
10736, and the stop pin 10738 partially extends into the tenth hole 10727. The eleventh
hole 10736 is provided for mounting the stop pin 10738, so that the roller pin 1073
is stationary relative to the guide piston 1071, to reduce the number of the relative
moving surfaces of the roller pin 1073 and the roller 10728, thereby increasing the
speeds of the relative moving surfaces and hence enhancing the dynamic pressure lubrication
effect. Its principle is the same as that of the interference fit of the roller and
the bushing. Optionally, when assembling the roller component 1072 and the roller
pin 1073 into the guide piston 1071, first the roller bushing 10722 and the thrust
bearing 10723 are mounted to the roller 10728 by means of cold assembling. Then, the
return spring 10737 and the stop pin 10738 are sequentially placed in the eleventh
hole 10736 of the roller pin 1073. Next, the roller component 1072 is placed in the
lower part of the guide piston 1071, with the roller pin 1073 passing sequentially
through one side of the tenth hole 10727 at the lower end of the guide piston 1071,
the inner hole of the roller component 1072 (specifically the inner hole of the roller
bushing 10722), and the other side of the tenth hole 10727 at the lower end of the
guide piston. Then, the stop pin 10738 is pressed with a hand so that its height is
lower than that of the second mounting hole 10712. At the same time, the roller pin
1073 is pushed until the stop pin 10738 springs into the tenth hole 10727 of the guide
piston 1071 under the action of the return spring 10737. In other words, the lubricating
oil flowing out of the pump body 101 of the fuel injection pump flows into the circumferential
oil groove 10725 through the second axial oil groove 10719 and then flows into the
partial circumferential oil groove 10729 through the vertical groove 10717 and the
first axial oil groove 10716, so as to achieve the lubrication between the guide piston
1071 and the pump body 101 of the fuel injection pump. Moreover, because the gap between
the guide piston 1071 and the central hole of the pump body 101 in which it is fitted
is small, the lubricating oil entering the second axial oil groove 10719 and the circumferential
oil groove 10725 of the guide piston 1071 is maintained at a certain pressure, and
a lubricating oil film can be formed between the outer cylindrical portion of the
guide piston 1071 and the central hole of the pump body 101. Meanwhile, the lubricating
oil in the second axial oil groove 10719 partially flows into the lubricating oil
inlet passage 10735 and is deep into the roller pin 1073, through the inclined hole
10718, and then flows out to the outer cylindrical surface of the roller pin 1073
through the second oil holes 10733, so as to deeply lubricate the roller pin 1073
and the roller bushing 10722 and form a lubricating oil film between the roller pin
1073 and the rolling bushing 10722.
[0076] Optionally, as shown in FIG. 18, the first chamfer 10741 and the second chamfer 10726
each have an angle ranging from 1° to 10°. A small-angle convergent wedge shape can
be formed when the guide piston 1071 is fitted in the central hole in the pump body
101, so as to strengthen the squeezing effect in dynamic pressure lubrication and
to increase the thickness of the oil film on the surface of the guide piston 1071
during operation, thereby reducing the probability of jamming between the guide piston
1071 and the pump body 101.
[0077] Optionally, as shown in FIGS. 20 and 21, the lubricating oil inlet passage 10735
comprises: a third radial oil passage 10739 provided along the radial direction of
the roller pin 1073 and an axial oil passage 10740 provided along the axial direction
of the roller pin 1073. The third radial oil passage 10739 is connected to the axial
oil passage 10740. The axial oil passage 10740 is connected to the second oil hole
10733 in the second waist-shaped groove 10732.
[0078] The high-pressure fuel pump 1 described above has the following effects.
- (1) The technical problem of insufficient flexibility in the prior mechanical adjustment
method can be solved by adjusting feed of the heavy fuel using the electronic control
proportional valve 2. In view of this, a cooling circulating fuel passage is provided
inside the electronic control proportional valve 2, through which the cooling fuel
flowing in the pump body 101 enters the electronic control proportional valve 2 to
cool the electronically controlled elements in the electronic control proportional
valve 2 in a targeted manner, so that the electronically controlled elements of the
electronic control proportional valve 2 are maintained within the normal temperature
range, thereby permitting the use of the electronic control proportional valve 2 for
throttling the feed of fuel to the high-pressure fuel pump. The disadvantages of the
mechanical fuel quantity adjustment are overcome by the electronic control proportional
valve 2, and the fuel supply flow is adjusted with increased accuracy, flexibility,
and response speed, thereby achieving a more accurate match between the fuel supply
quantity from the pump and the working condition of the diesel engine. Thus, the performance
degradation caused by insufficient fuel supply is avoided. Also, an excessive flow
is reduced during working, thereby reducing the actual load on the high-pressure fuel
pump 1.
- (2) The fuel inlet valve component 1031 is additionally provided so that when the
high-pressure fuel chamber 1041 of the plunger barrel 1042 is changed from the fuel
suction state to the fuel compression state, the fuel inlet valve component is quickly
closed to ensure stable pressure at the related position(s) in the fuel inlet passage
of the fuel inlet valve seat 10311, thereby effectively preventing cavitation erosion.
- (3) The leakage of the heavy fuel can be completely prevented by using a small amount
of lubricating oil in the second annular groove 10422 of the plunger and barrel assembly
104, which prevents corrosion of important parts such as the plunger spring 105 under
the plunger barrel 1042 by the leaked heavy fuel. Furthermore, in the present disclosure,
the vertical height of the guide piston 1071 can be effectively shortened by sealing
the heavy fuel with a small amount of lubricating oil (it is unnecessary to provide
the guide piston 1071 with a long sealing section as in the low-speed engine in the
prior art), thereby reducing the vertical height of the pump of the high-pressure
fuel pump 1 and reducing the overall weight of the high-pressure fuel pump 1. It is
experimentally known that the vertical height of the high-pressure fuel pump 1 in
the solution of the present disclosure is reduced by 1/3 as compared with the high-pressure
fuel pump in the prior art.
- (4) The outer spring seat 1061 has a boss-type structure thinner on the outside and
thicker in the middle as a whole. The outer spring seat 1061 is mainly subjected to
a pressure transmitted from the plunger 1043 to the upper sphere 1062 during working.
The pressure results in a stress field distributed in a tapered shape in the outer
spring seat 1061. The outer spring seat 1061 is provided in a boss shape corresponding
thereto, so that the mass of the outer spring seat 1061 can be reduced on the premise
of having satisfactory strength, thereby reducing its mass in movement. The thicker
part in the middle of the boss also provides space for designing a spherical surface
and a fuel passage in its middle.
- (5) The outer spring seat 1061 and the upper sphere 1062 are fitted to each other
in spherical surface. When the lower spring seat component 106 with a spherical surface
is disposed between the plunger 1043 and the guide piston 1071, even if there is a
large parallelism error between the upper end surface of the guide piston 1071 and
the end surface at the tail of the plunger 1043, the angle can be automatically adjusted
by the spherical surface, so that the contact surfaces between the upper sphere 1062
and the plunger 1043 are kept in full contact with each other. In this way, partial
contact is eliminated, the overall force application is balanced, and the tendency
of excessive local stress is alleviated. Moreover, a supporting force exerted on the
plunger 1043 by the upper sphere 1062 passes through the center of the spherical surface
to eliminate the additional bending moment, thereby optimizing the dynamic characteristics
and improving the load-bearing capacity of the system.
- (6) The spherical hole 10612 supplies lubricating oil to the spherical surfaces for
lubricating the spherical surfaces. The lubricating oil creates an elastohydrodynamic
lubrication effect on the spherical surfaces, so as to reduce the wear rate, reduce
contact stress, reduce fretting damage, and increase the load-bearing capacity and
fatigue strength of the spherical surfaces.
- (7) The outer surface of the outer spring seat 1061 is formed as a tapered surface.
The lubricating oil outlet passage 10615 is provided in the outer tapered surface
of the outer spring seat 1061, which can avoid blockage of the flow area of the lubricating
oil outlet passage 10615 by the plunger spring 105, so that the flow area is not affected
by the position of the plunger spring 105.
- (8) The inner spring seat 1063 is provided with the tapered guide surfaces 10637,
which can improve the centering. Even when an impact occurs, the inner spring seat
1063 and the upper sphere 1062 can be automatically aligned with each other to improve
the tendency of uneven force application.
- (9) A communicating hole 10713 is provided inside the guide piston 1071. Thus, when
the lubricating oil upstream of the guide piston 1071 is flowing down from the communicating
hole 10713, the lubricating oil is evenly distributed in the middle right above the
second mounting hole 10712 of the roller 10728, the lubricating oil is evenly distributed
on generatrix of the roller, and the lubricating oil is distributed (can be evenly
distributed) on the surface of the roller 10728 without being affected by the forward
or reverse rotation. The vertical force distribution on the guide piston is improved.
In other words, the pressure from the plunger 1043 is distributed onto thicker positions
around the communicating hole 10713. In this way, the overall force application is
balanced, the maximum stress is reduced, and the load-bearing capacity and reliability
of the system are increased. In the pump assembly, when the guide piston 1071 is fitted
with the outer spring seat 1061, the lubricating oil outlet passage 10615 of the outer
spring seat 1061 communicates with the lubricating oil leaking from the upper part
of the plunger and barrel assembly 104, so as to increase the area of flow of the
lubricating oil.
- (10) The first radial oil grooves 10715 provided in the boss 10714 are filled with
lubricating oil to supply sufficient lubricating oil to the moving surface (the end
surface of the roller component 1072). A dynamic pressure oil film is formed on the
end surface of the roller 10728 with the speed of movement of the end surface of the
roller 10728, to separate the boss 10714 of the guide piston 1071 from the end surface
of the roller component 1072, which can reduce wear and reduce the friction coefficient.
In the case where the first radial oil grooves 10715 are provided in the boss 10714
of the guide piston 1071, the guide piston 1071 will not rotate relatively, high-pressure
and low-pressure oil film regions are relatively stationarily distributed on the friction
surface, and thus the roller component 1072 is relatively stationary in the axial
direction, as compared with a case where the first radial oil grooves 10715 are provided
in the roller component 1072.
- (11) The first waist-shaped groove 10731 and the second waist-shaped groove 10732
provided in the roller pin 1073 form an angle of 70° to 120° and are located directly
above the pressure-bearing region. This reduces the influence of the waist-shaped
grooves provided in the surface on the area of the pressure-bearing region while ensuring
sufficient oil supply to the friction surface, so that the pressure-bearing region
has a larger angle, and the oil film on the pressure-bearing region has a smaller
average pressure. A small-angle convergent wedge shape is formed between the first
waist-shaped groove 10731 on the outer layer and the corresponding friction surface,
which strengthens the squeezing effect in dynamic pressure lubrication. The second
waist-shaped groove 10732 on the inner layer is mainly used for storing more lubricating
oil to ensure sufficient oil supply to the friction surface. Thus, the lubrication
of the surface of the roller pin will not be affected even if it is supplied with
the lubricating oil poorly for a short time, thereby reducing the probability of jamming
of the system when there is a problem in the lubrication system.
[0079] Referring to FIGS. 24 and 25, the high-pressure common rail system for a low-speed
engine according to the present disclosure is suitable for working at a temperature
of 200 °C and at a pressure of 150 MPa, and has a low-pressure circulation function
and pressure limiting and pressure maintaining functions. The high-pressure common
rail system for a low-speed engine of the present disclosure comprises an integrated
common rail for a low-speed engine. The integrated common rail for a low-speed engine
mainly comprises parts such as a common rail pipe 12, a flow limiting valve component
13, a fuel inlet end cap 121, an end cover 122, a circulation valve component 16,
a pressure limiting valve component 18, a sensor mounting seat 127, a sensor 124,
a flow limiting valve mounting seat 125, and a bracket 126. The common rail pipe 12
employs a cylindrical structure. A plurality of first notches 1203 are provided in
a side of the outer circumferential surface of the common rail pipe 12, and the corresponding
flow limiting valve component 13, the sensor mounting seat 127, and the pressure limiting
valve component 18 are mounted into the plurality of first notches 1203, respectively.
The specific number of the plurality of first notches 1203 described above may be
adjusted according to the number of various components to be mounted correspondingly.
A second notch 1204 into which the bracket 126 is mounted is provided in the other
side of the common rail pipe 12 opposite to the first notch 1203. Moreover, the end
cover 122 and the fuel inlet end cap 121 are mounted on the two sides of the common
rail pipe 12.
[0080] Referring to FIG. 26, in the integrated common rail for a low-speed engine according
to the present disclosure, first bolts 128 are mounted by using two third waist-shaped
holes 131 provided in the bracket 126. The first bolts 128 are fixed to the low-speed
engine through the waist-shaped holes so that the integrated common rail is mounted
to the low-speed engine. In addition, a low-speed diesel engine has a relatively large
number of cylinders, usually, 6 cylinders, 8 cylinders, 12 cylinders, or the like.
Accordingly, there are a relatively large number of corresponding brackets 126. In
this embodiment, six brackets 126 are disposed, and each of the brackets 126 is provided
with third waist-shaped holes 131 to facilitate the mounting and adjustment of the
brackets 126 and prevent interference therebetween. Moreover, the bracket 126 is fixed
to the common rail pipe 12 by using four screws 130 and is equipped with cylindrical
pins to facilitate the positioning of the common rail pipe 12.
[0081] The common rail pipe 12 in this embodiment employs an integral structure, in which
a fuel inlet conduit 1201 penetrating both ends of the common rail pipe 12 is provided.
This facilitates machining of both sides of the common rail pipe 12 and reduces the
machining difficulty. The end cover 122 and the fuel inlet end cap 121 for sealing
the common rail pipe 12 are mounted on the two sides thereof. Moreover, the end cover
122 and the fuel inlet end cap 121 are sealed to the common rail pipe 12 by using
tapered surfaces, respectively. The end cover 122 is fixed to the common rail pipe
12 by means of screwing and the fuel inlet end cap 121 is fixed to the common rail
pipe 12 by means of screwing, whereby the sealing performance of the common rail pipe
12 can be improved.
[0082] The integrated common rail for a low-speed engine according to the present disclosure
has the pressure limiting and pressure maintaining functions. The pressure limiting
valve component 18 is mounted into the first notch 1203 provided in the common rail
pipe 12. The pressure limiting valve component 18 is configured such that when the
pressure in the fuel inlet conduit 1201 of the common rail pipe 12 exceeds the limit
pressure of the pressure limiting valve component 18, the pressure limiting valve
component 18 is opened by overcoming a preload force on a second pressure regulating
spring 185 provided therein, thereby achieving the self-adjustment function of the
common rail pipe 12. This function enables the pressure in the common rail pipe 12
to be maintained at a certain pressure value when the pressure limiting valve component
185 is stabilized. It can be ensured that the diesel engine operates at low speed
and at low torque.
[0083] Further, considering that inferior or low-quality fuel is used as a fuel medium in
the integrated common rail for a low-speed engine according to the present disclosure,
an air-controlled circulation valve component 16 is mounted onto the end cover 122
in order to prevent solidification of the fuel in the common rail system for a low-speed
engine after the low-speed engine is stopped. As shown in FIGS. 27 and 28, optionally,
the circulation valve component 16 comprises a first valve core 161, a first valve
body 162, a gland 167, a third sealing ring 1624, a fourth sealing ring 1627, a first
sealing ring 1628, a second sealing ring 1631, a lower spring seat 164, a fuel return
joint 168, a nut 1614, and a first pressure regulating spring 169, wherein the gland
167 is fixed to the first valve body 162 by means of screws 1632. After the low-speed
engine is stopped, the pressure in the fuel inlet conduit 1201 of the common rail
pipe 12 is reduced to be lower than a spring force from the first pressure regulating
spring 169. The spring force pushes the first valve core 161 to move downward. When
the first valve core 161 moves to the bottom dead center, the conical seal between
the first valve core 161 and the first valve body 162 in the circulation valve component
16 is unsealed, and then the heavy fuel in the fuel inlet conduit 1201 of the common
rail pipe 12 can flow back into the fuel tank through the first fuel return passage
1605, the second fuel return passage 1606, and the third fuel return passage 1607,
so as to achieve fuel circulation. When the low-speed engine is just started, compressed
air is introduced into an air inlet port 1630 in the circulation valve component 16.
After the compressed air enters the first cavity, the first valve core 162 is pushed
to move toward the direction of the top dead center by the action of the compressed
air. When the first valve core 162 moves upward to the top dead center, the conical
seal is formed between the first valve core 162 and the first valve body 161, so that
the pressure in the common rail pipe 12 is built up.
[0084] While the integrated common rail of the present disclosure is working, the common
rail pipe 12 is always in a high-pressure state. In order to ensure the safety of
the operator and the low-speed engine, the common rail pipe 12 is equipped with a
sensor 124 for detecting the pressure in the fuel inlet conduit 1201 in the common
rail pipe 12, which is configured to monitor the pressure in the fuel inlet conduit
1201 in real time. Two sensors 124 are provided as a backup for each other in order
to ensure accurate detection.
[0085] In addition, referring to FIGS. 24 and 30, optionally, a flow limiting valve component
13 is disposed between the common rail pipe 12 and the electronic control fuel injector
15. The flow limiting valve component 13 mainly comprises a second valve core 133,
a valve seat 131, a second valve body 132, a second pressure regulating spring 135,
and a first O-ring seal 136. When the high-pressure fuel pipe between the flow limiting
valve component 13 and the electronic control fuel injector 15 is broken or excessive
fuel is injected from the electronic control fuel injector 15, the second valve core
133 in the flow limiting valve component 13 adheres to the second valve body 132 by
overcoming a spring force from the second pressure regulating spring 135 by the pressure
difference, so that the high-pressure fuel in the fuel inlet conduit 1201 of the common
rail pipe 12 is hindered from flowing into the electronic control fuel injector 15.
[0086] In addition, the common rail system of the present disclosure works under a working
condition at high temperature and at high pressure using inferior fuel. Considering
that high-pressure fuel may possibly leak from the high-pressure sealing surfaces
of the common rail pipe 12 and the respective parts, and thus cause environmental
pollution and endanger the personal safety of workers, fuel return holes 1205 are
provided at the respective high-pressure seals for collecting returned fuel. Specifically,
a fuel return conduit 1202 is provided in the common rail pipe 12. The fuel return
conduit 1202 communicates with the first notches 1203 for collecting the returned
fuel leaking from the high-pressure seals of the common rail pipe 12, the flow limiting
valve component 13, and the pressure limiting valve component 18.
[0087] Optionally, referring to FIG. 24, optionally, the flow limiting valve component 13
is mounted at one of the first notches 1203 by means of the flow limiting valve mounting
seat 125, the pressure limiting valve component 18 is mounted at one of the first
notches 1203 by means of the pressure limiting valve mounting seat 123, and the sensor
124 is mounted at one of the first notches 1203 by means of the sensor mounting seat
127. A sealing ring is disposed on each of the flow limiting valve mounting seat 125,
the pressure limiting valve mounting seat 123, and the sensor mounting seat 127, so
as to prevent fuel leakage. Similarly to the principle of mounting of the pressure
limiting valve component 18, the sensor mounting seat 127 and the flow limiting valve
mounting seat 125 are first fixed to the common rail pipe 12 by means of screw fixing,
and then the sensor 124 and the flow limiting valve component 13 are mounted by means
of screw connection.
[0088] Referring to FIG. 24 and FIGS. 26 to 29, optionally, the circulation valve component
16 comprises: a first valve body 161 fixed to the end cover 122, a first valve core
162, a nut 1614, a lower spring seat 164, a sealing ring, a gland 167, and a fuel
return joint 168. The first valve body 161 is provided therein with an axial central
hole and two first fuel return passages 1605. The axial central hole communicates
with the fuel inlet conduit 1201 in the common rail pipe 12, so that the high-pressure
fuel in the fuel inlet conduit 1201 in the common rail pipe 12 can enter the third
axial through hole of the circulation valve component 16. Two first sealing ring grooves
1620 are provided at positions of the top of the first valve body 161 where the two
first fuel return passages 1605 are provided, and the first valve body 161 is further
provided with a first air inlet passage 1608 communicating with the axial central
hole. A second sealing ring groove 1622 is provided in the circumferential direction
of the first air inlet passage 1608, and a second sealing ring 1631 for improving
the sealing effect is mounted in the second sealing ring groove 1622. The first valve
core 162 is disposed in the axial central hole of the first valve body 161, the top
of the first valve core 162 is provided with a first conical seal surface 1611, and
the upper part of the first conical seal surface 1611 is further provided with an
external thread 1612. The lower spring seat 164 passes through the external thread
1612 and then is sleeved on the first conical seal surface 1611. The lower part of
the lower spring seat 164 is provided with a second conical seal surface 1613 mating
with the first conical seal surface 1611. The nut 1614 is sleeved on the external
thread 1612 and presses against the lower spring seat 164. The first pressure regulating
spring 169 is sleeved on the nut 1614 and fixed to the lower spring seat 164. The
gland 167, which is disposed on the top of the first valve body 161, is provided with
two second fuel return passages 1606 communicating with the two first fuel return
passages 1605 and is further provided, in its middle part, with a threaded hole 1603
in which the fuel return joint 168 is mounted. The orifice of the threaded hole 1603
is provided with a first flat sealing surface 1615. The gland 167 is provided, at
its bottom surface, with a second air inlet passage 1629 communicating with the first
air inlet passage 1608 and provided, in its circumferential direction, with an air
inlet port 1630 communicating with the second air inlet passage 1629. The fuel return
joint 168 is provided in the threaded hole 1603 and provided with a second flat sealing
surface 1616 mating with the first flat sealing surface 1615. It should be understood
by those skilled in the art that another number of first fuel return passages 1605
may be provided as required, in the technical solution of the present disclosure,
and the numbers of the first sealing ring grooves 1620 and the second fuel return
passages 1606 may be adjusted correspondingly according to the number of the first
fuel return passages.
[0089] As shown in FIGS. 28 and 29, when compressed air is introduced into the air inlet
port 1630 upon the low-speed engine is just started, the first valve core 162 is moved
upward, so that there is a maximum distance H2 between the bottom end surface of the
first valve body 161 and the bottom end surface of the first valve core 162. At this
time, no fuel is returned into the first fuel return passages 1605. When the fuel
feed pressure at the bottom of the first valve core 162 is lower than the pressure
for opening the first pressure regulating spring 169, the first valve core 162 is
moved downward under the action of spring force from the first pressure regulating
spring 169. At this time, the distance H2 between the bottom end surface of the first
valve body 161 and the bottom end surface of the first valve core 162 is 0. Return
of fuel into the first fuel return passages 1605 is started, thereby realizing the
circulation flow of fuel at low pressure. The high-pressure heavy fuel in the common
rail pipe 12 flows back to the fuel tank through the first fuel return passages 1605,
the second fuel return passages 1606, and the third fuel return passage 1607. It can
be understood that the above-mentioned distance H2 between the bottom end surface
of the first valve body 161 and the bottom end surface of the first valve core 162
corresponds to the lift of the first valve core 162.
[0090] Optionally, referring to FIG. 28, optionally, the axial central hole of the first
valve body 161 comprises: a first central hole 1601 mating with the outer circumferential
surface of the first valve core 162. A third sealing ring groove 163, in which a third
sealing ring 1624 is mounted, is provided in the wall of the first central hole 1601.
In the present disclosure, it can be determined based on the above-mentioned principle
that the first valve core 162 is moved down to the bottom dead center position under
the action of the first pressure regulating spring 169 before air is introduced into
the circulation valve component 16. At this time, the first valve core 162 and the
first valve body 161 are not sealed to each other. At the initial moment at which
the low-speed engine is just started, the high-pressure fuel pump 1 is rotating at
a low speed, and the high-pressure fuel is pumped from the high-pressure fuel pump
1 into the common rail pipe 12 at a small flow rate. Because no conical seal is formed
between the first valve core 162 and the first valve body 161, pressure cannot be
quickly built up in the fuel inlet conduit 1201 of the common rail pipe 12. Therefore,
it is necessary to form a conical seal between the first valve core 162 and the first
valve body 161, in other words, it is necessary to enable a forward movement of the
first valve core 162, in order to quickly build up the pressure in the common rail
pipe 12. At this time, it is necessary to apply an external forward force to the first
valve core 162. The "forward movement" described in this embodiment refers to an upward
movement in the vertical direction according to the direction shown in the drawings,
and vice versa. In this example, compressed air is used as a power source of the external
forward force. Therefore, it is necessary to design a closed volume chamber (first
cavity) in the first valve body 161 for accommodating compressed air. As shown in
FIGS. 28 and 29, the first valve core 162 is provided with a first conical seal surface
1611 and an external thread 1612. The lower spring seat 164 is pressed against the
first conical seal surface 1611 by tightening the nut 1614 onto the external thread
1612. The first pressure regulating spring 169 is mounted between the nut 1614 and
the lower spring seat 164. A first cavity for accommodating compressed air is formed
between the lower spring seat 164 and the first central hole 1601 of the first valve
body 161. When the pressure of compressed air is large enough to be greater than the
preload force on the first pressure regulating spring 169, the first valve core 162
is moved upward. At this time, the distance H2 between the bottom end surface of the
first valve body 161 and the bottom end surface of the first valve core 162 has the
maximum value, and no fuel is returned into the first fuel return passage 1605. When
the fuel pressure at the lower part of the first valve core 162 is large enough, the
introduction of compressed air is stopped. At this time, the distance H2 between the
bottom end surfaces of the first valve core 162 and the first valve body 161 is maintained
mainly by the fuel feed pressure.
[0091] Here, a third sealing ring 1624 for preventing leakage of compressed air into the
first fuel return passages 1605 is mounted in the third sealing ring groove 163 provided
in the first central hole 1601 mating with the outer circumferential surface of the
first valve core 162, in order to enable the first cavity to form a closed volume
chamber. Similarly, a fourth sealing ring groove 1625 in which a fourth sealing ring
1627 is mounted is provided in a wall of the lower spring seat 164 that mates with
the axial central hole. Furthermore, the lower part of the lower spring seat 164 is
provided with a second conical seal surface 1613. The second conical seal surface
1613 mates with the first conical seal surface 1611, so as to prevent leakage of compressed
air.
[0092] In the present disclosure, compressed air is introduced into the first cavity through
the air inlet port 1630, the second air inlet passage 1629, and the first air inlet
passage 1608. A first sealing ring 1628 is disposed at the junction between the first
air inlet passage 1608 and the second air inlet passage 1629 in order to prevent air
leakage.
[0093] As shown in FIGS. 28 and 29, after compressed air is introduced into the first cavity,
the lower spring seat 164 is moved forward. The lower spring seat 164 is pressed against
the first valve core 162 by means of the nut 1614, so that the lower spring seat 164
is integrated with the first valve core 162, in order to ensure a forward movement
of the lower spring seat 164 together with the first valve core 162. In addition,
the diameter of the fourth central hole 1618 in the lower spring seat 164 must be
larger than the outer diameter of the external thread 1612, in order to prevent damage
of the second conical seal surface 1613 of the lower spring seat 164 caused by its
contact with the external thread 1612, when the lower spring seat 164 is passing through
the outer thread 1612 of the first valve core 162.
[0094] An air outlet passage 1623 communicates with a second cavity formed between the third
central hole 1617 in the lower spring seat 164 and the second central hole 1602 in
the first valve body 161 for discharging air from the second cavity, in order to reduce
the movement resistance applied to the first valve core 162 during its forward movement.
[0095] Furthermore, considering that a mating portion 1626 of the lower spring seat 164
is equipped with a fourth sealing ring 1627, a guide portion 1619 having a full angle
generally set at 30° to 40° is provided at the opening of the second central hole
1602, so that the lower spring seat 164 is conveniently mounted in the second central
hole 1602 of the first valve body 161 without damaging the fourth sealing ring 1627.
The full angle of the guide portion 1619 described above is defined as an angle between
the two edges of the guide portion 1619, and the half angle is an angle between one
edge of the guide portion 1619 and its central line.
[0096] As shown in FIG. 28, optionally, a first sealing ring groove 1620 in which a first
sealing ring 1628 is mounted is provided at the junction between the first fuel return
passage 1605 and the second fuel return passage 1606 to prevent leakage of low-pressure
fuel. Similarly, the fuel return joint 168 is provided with a second flat sealing
surface 1616 mating with the first flat sealing surface 1615 of the gland 167, in
order to prevent leakage of fuel between the fuel return joint 168 and the gland 167.
[0097] A third cavity is formed between the threaded hole 1603 provided in the gland 167
and the bottom surface of the fuel return joint 168. The third cavity communicates
with the third fuel return passage 1607 provided in the fuel return joint 168 (the
third fuel return passage 1607 communicates to the fuel tank via a pipeline) and with
the second fuel return passages 1606. The third cavity has a flow area larger than
that of the second fuel return passage 1606, so that the fuel can be discharged in
time.
[0098] When the low-speed engine is stopped and when the fuel pressure at the bottom of
the first valve core 162 (i.e., the fuel pressure in the fuel inlet conduit 1201 of
the common rail pipe 12) decreases to the pressure for opening the first pressure
regulating spring 169, the first valve core 162 is moved in a reverse direction. At
this time, the distance H2 is 0. Since the distance H1 between the lower end surface
of the lower spring seat and the bottom of the second central hole is set to be greater
than H2, the lower spring seat 164 will not collide with the second central hole 1602.
At this time, the first cavity has a certain volume. In this way, when compressed
air is introduced into the first cavity during starting of the low-speed engine, the
first valve core 162 can be moved forward quickly, whereby the fuel pressure at the
bottom of the first valve body 162 can be built up quickly.
[0099] Here, the circulation valve component 16 is used in a high-pressure common rail system
for a low-speed engine, in which a combustible medium is often inferior fuel. In order
to ensure the service life and reliable function of the circulation valve, the first
valve core 162 is made of a high-speed tool steel material, the mating section of
the first valve core 162 is plated with DLC, and the first valve body 161 is made
of high-strength structural steel subjected to nitriding treatment. The high temperature
resistance and corrosion resistance of the circulation valve are ensured by using
such materials and heat treatment method.
[0100] The circulation valve component 16 for the common rail pipe 12 described above is
mounted onto the high-pressure common rail pipe 12. The main principle involves achieving
the upward pushing and downward pushing of the first valve core 162 by using compressed
air and the spring force from the first pressure regulating spring 169, respectively.
When compressed air is introduced into the air inlet port 1630, the first valve core
162 and the lower spring seat 164 are connected as a whole by means of the nut 1614
under the action of air pressure so as to move upward together. At this time, the
distance H2 has the maximum value, no fuel is returned into the first fuel return
passages 1605, and the pressure of the fuel at the bottom of the first valve core
162 is built up during the movement of the high-pressure fuel pump. When the fuel
pressure reaches a certain level, the compressed air is cut off. At this time, the
distance H2 is maintained at the maximum value mainly by the fuel feed pressure exerted
on the common rail pipe 12. When the low-speed engine is stopped and when the pressure
in the common rail pipe 12 decreases below the spring force from the first pressure
regulating spring 169, the first valve core 162 is pushed in a reverse direction.
At this time, the low-pressure fuel enters the first fuel return passages 1605 and
then flows back into the fuel tank sequentially from the second fuel return passages
1606 and the third fuel return passage 1607. Thus, the fuel circulation effect is
achieved, solidification of the fuel is avoided, and corrosion of the parts can be
prevented.
[0101] Specifically, referring to FIGS. 32 and 34, optionally, the pressure limiting valve
component 18 in this embodiment comprises: a third valve body 181, a third valve core
182, a second O-ring seal 183, a second bolt 184, a third pressure regulating spring
185, a fuel pipe joint 186, a pressure regulating gasket 187 as parts. Here, the third
valve core 182 is mounted in a fourth-stage hole 18105 in the third valve body 181.
A second tapered portion 18202 of the third valve core 182 is pressed against a sealing
seat surface 18103 (referring to a wall of a second-stage hole 18102) of the third
valve body 181. The third valve core 182 is pressed by the fuel pipe joint 186 and
by the third pressure regulating spring 185. The lower part of the fuel pipe joint
186 is provided with a fifth sealing ring groove 18604, in which a second O-ring seal
183 is mounted to improve the sealing effect and achieve the effect of preventing
fuel leakage. The middle part of the fuel pipe joint 186 is provided as a multi-stage
counterbore structure, including a first counterbore 18601, a second counterbore 18602,
and a fuel outlet hole 18603. The outer circumferential surface of the upper part
of the fuel pipe joint 186 is provided with a thread. The fuel pipe joint 186 is mounted
onto the third valve body 181 by means of the second bolts 184. The pressure regulating
gasket 187 and the third pressure regulating spring 185 are mounted in the second
counterbore 18602 in the middle part of the fuel pipe joint 186.
[0102] Optionally, the central hole of the third valve body 181 is designed as a multi-stage
hole structure, including a first-stage hole 18101, a second-stage hole 18102, a third-stage
hole 18104, and a fourth-stage hole 18105, wherein the second-stage hole 18102 is
a small throttling hole, and the diameter of the first-stage hole 18101 is larger
than the diameter of the second-stage hole 18102, so that the depth of the throttling
hole, i.e., the second-stage hole 18102, can be decreased to reduce the overall machining
difficulty. An angle of 59° is provided between the second-stage hole 18102 and the
third-stage hole 18104 of the third valve body 181 (namely, the sealing seat surface
18103 of the third valve body is provided at an angle of 59°) to ensure a linear seal
between the sealing seat surface of the third valve body and the second tapered portion
18202 of the third valve core 182 within a deviation range of 1° to achieve good sealing
performance. The diameter of the third-stage hole 18104 of the third valve body 181
is set to be larger than both the diameter of the second-stage hole 18102 and the
diameter of the fourth-stage hole 18105 for storing fuel pressure. Optionally, the
diameter ϕ of the fourth-stage hole 18105 of the third valve body 181 is set at 5
mm. If the diameter of the fourth-stage hole 18105 is too small, it is machined with
great difficulty and its accuracy cannot be guaranteed in use. If the diameter of
the fourth-stage hole 18105 is too large, the depth of the fourth-stage hole 18105
will be increased due to its length required to mate with the third valve core 182,
which leads to increased difficulty in machining the sealing seat surface 18103. As
a result, its accuracy cannot be guaranteed, and a difficult measurement problem will
also be caused. The third valve body 181 is made of a high-strength structural steel
material subjected to nitriding treatment. The high-pressure resistance of the third
valve body 181 can be guaranteed by selecting a high-strength material. The nitriding
treatment can ensure that the third valve body 181 can work in an environment of a
low-speed engine using a heavy fuel oil and have corrosion resistance.
[0103] Referring to FIG. 34, optionally, the head of the third valve core 182 is provided
as a structure with two tapered portions, including a first tapered portion 18201
and a second tapered portion 18202, wherein the first tapered portion 18201 has a
taper angle set to an obtuse angle of 120°. On the one hand, this allows for increased
reliability of the third valve core 182. On the other hand, this allows for an increased
flow area of the head of the third valve core 182 and reduced occurrence of cavitation.
The second tapered portion 18202 of the third valve core 182 has a taper angle set
to an acute angle of 60°. The taper angle of the second tapered portion 18202 of the
third valve core 182 is generally set at two angles, namely, 60° or 90°, in order
to ensure good sealing performance. Considering that the third valve core which is
a needle valve has a shorter lift at 60° than at 90° under the same flow area, there
is less difficulty in designing the third pressure regulating spring 185.
[0104] Referring to FIG. 34, optionally, two symmetrical second flat portions 18203 are
formed by milling the third outer cylindrical portion 18204 of the middle part of
the third valve core 182. The second flat portion 18203 has a slightly larger flow
area than that of the second-stage hole 18102 in the third valve body 181. A second
gap allowing the fuel to passthrough is formed between the second flat portion 18203
of the third valve core 182 and the fourth-stage hole 18105. The second gap has a
fuel flowable area larger than the fuel flow area in the second-stage hole 18102.
As shown in FIG. 34, a second smaller outer cylindrical portion 18206 configured for
positioning of the third pressure regulating spring 185 is provided at the upper part
of the third valve core 182, and the third pressure regulating spring 185 is sleeved
around the second smaller outer cylindrical portion 18206. It should be explained
that, in the present disclosure, the term "flow area" generally refers to a fuel passing
area of a corresponding gap or hole.
[0105] The third valve core 182 is made of a high-speed tool steel material. The third valve
core 182 has a third outer cylindrical portion 18204 mating with the fourth-stage
hole 18105 of the third valve body 1, which is correspondingly plated with a DLC layer
to ensure the required strength of the third valve core 182 and the corrosion resistance
in a heavy fuel oil environment. The DLC plating can also make the third valve core
182 more wear-resistant.
[0106] Optionally, referring to FIG. 32, a limited distance h1 is provided between the third
valve core 182 and the third valve body 181 to ensure a movement of the third valve
core 182 within a certain range. Otherwise, the third pressure regulating spring 185
will be compressed to a solid state, so that the third pressure regulating spring
185 cannot be restored to its original position. Here, the compression of the third
pressure regulating spring 185 to a solid state refers to compression of the spring
to a state where the coils touch each other.
[0107] Optionally, referring to FIG. 32, an overlap region h is provided between the third
valve core 182 and the third valve body 181. While the third valve core 182 is being
closed from an opened state, there is a moment at which an overlap region h occurs
between the third valve core 182 and the third valve body 181, at which the fuel cannot
flow out through the second flat portions 18203, and pressure is formed in the third-stage
hole 18104 such that a force opposite to the movement direction (i.e., the opening
or closing direction) is exerted on the third valve core 182. This reduces an impact
force applied to the sealing seat surface 18103 of the third valve body 181 from the
third valve core 182, thereby increasing the service life of the third valve body
181 and the third valve core 182.
[0108] The pressure limiting valve component 18 works based on the following principle.
The pressure limiting valve component 18 is used in the high-pressure common rail
system described above, wherein the high-pressure common rail system may be a high-pressure
common rail fuel injection system for a marine low-speed diesel engine, and the pressure
limiting valve component 18 can work at a high pressure of 150 MPa and at a high temperature
of 200 °C. As a safety protection part of the common rail system, the pressure limiting
valve component 18 is usually in an inoperative state and thus is also called a pressure
safety valve. When the rail pressure in the fuel inlet conduit 1201 of the common
rail pipe 12 is controlled abnormally and thus exceeds the pressure P
L for opening the pressure limiting valve component 18, the pressure limiting valve
component 18 is opened to relieve pressure. Specifically, as high-pressure fuel supplied
into the fuel inlet conduit 1201 of the common rail pipe 12 flows into the first-stage
hole 18101 and then into the second-stage hole 18102, the third valve core 182 is
pushed by the fuel pressure to move upward so as to release the seal between the third
valve core 182 and the third valve body 181. The third valve core 182 is moved upward
under the action of the fuel pressure, until the tapered surface seal between the
second tapered portion 18202 and the sealing seat surface 18103 is released. The high-pressure
fuel in the fuel inlet conduit 1201 of the common rail pipe 12 partially passes through
the first-stage hole 18101, the second-stage hole 18102, the third-stage hole 18104,
the fourth-stage hole 18105, the recesses 18205, the first counterbore 18601, and
the second counterbore 18602, and finally enters the fuel return pipe from the fuel
outlet hole 18603 and ultimately flows back to the fuel tank, so that the pressure
in the fuel inlet conduit 1201 of the common rail pipe 12 is reduced. After the third
valve core 182 is opened, the pressure in the fuel inlet conduit 1201 of the common
rail pipe 12 is reduced, so that the amount of fuel fed into the fuel system (i.e.,
the amount of fuel pumped from the high-pressure fuel pump 1 into the common rail
pipe 12) and the amount of fuel discharged through the pressure limiting valve component
18 gradually reach a stable state, and the system pressure gradually approaches a
stable pressure Ps. It is ensured that the diesel engine works in a failure mode at
the stable pressure Ps, so that the ship limps back to port. The pressure limiting
valve component 18 is closed only when the pressure in the common rail pipe 12 decreases
to a certain level (lower than the pressure P
L for opening the pressure limiting valve component 18).
[0109] In this embodiment, a flow limiting valve component 13 is mounted between the common
rail pipe 12 and a corresponding electronic control fuel injector 15 and can cut off
the fuel supply into the electronic control fuel injector 15 to prevent problems such
as fire and explosion and personnel safety issues when fuel leaks from the high-pressure
fuel pipe, or fuel leaks or is abnormally injected from the electronic control fuel
injector 15.
[0110] Optionally, as shown in FIGS. 30 and 31, the flow limiting valve component 13 comprises:
a valve seat 131 having a larger outer cylindrical portion provided with a first flat
portion 13104 for returning fuel, provided in its middle part with a first fuel inlet
hole 13101 communicating with the fuel inlet conduit 1201 of the common rail pipe
12, and provided with a fifth conical seal surface 13102 at its bottom; a second valve
body 132 having a smaller end surface 13201 fixed to a larger end surface 13105 of
the valve seat 131, the second valve body 132 being provided with a second axial through
hole 13209 in the axial direction which extends through the two upper and lower end
surfaces of the second valve body 132 and in which the valve seat 131 is partially
press-fitted in a press fit manner; and a second valve core 133 fixed to the upper
end surface of the first smaller outer cylindrical portion 13106 of the valve seat
131 through the second axial through hole 13209. The second valve core 133 is provided
with an axial blind hole 13302 communicating with the first fuel inlet hole 13101
and four transverse flow restricting orifices 13304 communicating with the axial blind
hole 13302. The upper part of the second valve core 133 is provided with a third conical
seal surface 13305 and a fourth conical seal surface 13306. The second valve body
132 has four fourth fuel return passages 13210 communicating with the first flat portion
13104. The second valve body 132 is provided with a first sealing seat surface 13206
mating with the third conical seal surface 13305 and is provided with a fourth hole
13207 and a second sealing seat surface 13208 in this order at a position close to
the first sealing seat surface 13206. The second valve body 132 comprises a first
mating portion 13203 mating with the first smaller outer cylindrical portion 13106
of the valve seat 131 and a second mating portion 13204 mating with the first outer
cylindrical portion 13301 of the second valve core 133. A cavity communicating the
transverse flow restricting orifices 13304 with the axial blind hole 13302 is formed
between the second mating portion 13204 and the second valve core 133. A second pressure
regulating spring 135 is inserted in the cavity and fixed to the upper end surface
of the first outer cylindrical portion 13301 of the second valve core 133.
[0111] Optionally, as shown in FIG. 33, in this embodiment, the second axial through hole
13209 comprises a first hole 13212, a second hole 13213, a third hole 13205, a fourth
hole 13207, a fifth hole 13214, and a sixth hole 13215 that are connected to each
other in this order from top to bottom. The valve seat 131 is partially press-fitted
into the first hole 13212. The second valve core 133 is assembled in the second hole
13213, and a cavity is formed between the upper part of the second valve core 133
and the upper part of the second hole 13213. The third conical seal surface 13305
is formed at the wall of the third hole 13205. A second sealing seat surface 13208
for being sealed to the fuel inlet end of the fuel pipe of the electronic control
fuel injector 15 is formed at the wall of the fifth hole 13214. The diameter of the
sixth hole 13215 is larger than the diameter of each of the first hole 13212, the
second hole 13213, the third hole 13205, the fourth hole 13207, and the fifth hole
13214.
[0112] The fourth hole 13207 is used as a fuel outlet hole and is configured such that the
fuel in the first fuel inlet hole 13101 flows out into the fourth hole 13207 and further
flows out therefrom when the first sealing seat surface 13206 and the third conical
seal surface 13305 are unsealed from each other.
[0113] When the fuel feed pressure in the transverse flow restricting orifice 13304 on the
side of the axial blind hole 13302 exceeds a certain value of the pressure in the
cavity between the second mating portion 13204 and the second valve core 133, the
second valve core 133 is moved upward under the action of the fuel feed pressure,
so that the third conical seal surface 13305 is brought into contact with the first
sealing seat surface 13206 and a tapered surface seal is formed therebetween to block
flow of fuel into the fuel outlet hole.
[0114] Optionally, as shown in FIG. 30, the second valve core 133 has a third conical seal
surface 13305, and the second valve body 132 has a first sealing seat surface 13206
that can form a tapered surface seal with the third conical seal surface 13305. When
the fuel feed pressure in the transverse flow restricting orifice 13304 on the side
of the axial blind hole 13302 exceeds a certain value of the cavity pressure, a tapered
surface sealing relationship is formed between the third conical seal surface 13305
and the first sealing seat surface 13206 to block flow of fuel into the fuel outlet
hole 13207. On the contrary, when the fuel feed pressure in the transverse flow restricting
orifice 13304 on the side of the axial blind hole 13302 does not exceed a certain
value of the cavity pressure, the tapered surface seal between the third conical seal
surface 13305 and the first sealing seat surface 13206 is released. With regard to
the fourth conical seal surface 13306, during the upward movement of the second valve
core 133 under the pressure from the fuel fed therein, the fourth conical seal surface
13306 is first brought into contact with the first sealing seat surface 13206, but
there is a gap between the third sealing seat surface 13305 and the first sealing
seat surface 13206. The gap may be filled with a certain amount of fuel to cushion
the rapid movement of the second valve core 133 to prevent a large impact on the second
valve body 132 due to an excessively rapid movement of the second valve core 133.
[0115] Optionally, as shown in FIG. 25, the flow limiting valve component 13 is mounted
onto the common rail pipe 12 by means of a corresponding flow limiting valve mounting
seat 125, and the flow limiting valve mounting seat 125 is fixed to the common rail
pipe 12 by screws. Screw mounting holes 13211 are designed in the second valve body
132. The second valve body 132 of the flow limiting valve component 13 is fixed to
the flow limiting valve mounting seat 125 by means of the screws passing through the
screw mounting holes 13211. The flow limiting valve mounting seat 125 is provided
with a fuel hole communicating with the first fuel inlet hole 13101, through which
the high-pressure fuel in the fuel inlet conduit 1201 of the high-pressure common
rail pipe 12 can enter the first fuel inlet hole 13101. The valve seat 131 is designed
with a fifth conical seal surface 13102 for sealing the high-pressure fuel between
the flow limiting valve component 13 and the high-pressure common rail pipe 12. The
second valve body 132 is designed with a second sealing seat surface 13208 for allowing
tapered surface sealing and connection between the flow limiting valve component 13
and the fuel pipe of the electronic control fuel injector 15.
[0116] Optionally, as shown in FIG. 30, the outer surface of the second valve body 132 is
provided with a sixth sealing ring groove in which a first O-ring seal 136 is mounted,
wherein the first O-ring seal 136 is provided in the outer surface of the second valve
body 132 for the purpose of enhancing the sealing performance between the second valve
body 132 and an external component when the second valve body 132 is assembled into
the external component.
[0117] Optionally, as shown in FIG. 30, the first valve seat 131 is provided with a first
flat portion 13104. The first flat portion 13104 communicates with the four fourth
fuel return passages 13210 for collecting fuel leaking from the fifth conical seal
surface 13102, from between the larger end surface 13105 of the valve seat 131 and
the smaller end surface 13201 of the second valve body 132, and from the second sealing
seat surface 13208 of the second valve body 132.
[0118] Optionally, as shown in FIG. 30, in order to ensure the sealing between the smaller
end surface 13201 of the second valve body 132 and the larger end surface 13105 of
the valve seat 131, a large bevel 13202 is provided for reducing the contact area
between the larger end surface 13105 and the smaller end surface 13201 to enhance
the sealing therebetween.
[0119] Optionally, the first smaller outer cylindrical portion 13106 of the valve seat 131
and the first mating portion 13203 of the second valve body 132 have the same diameter
and are mated with each other in a transitional manner, in order to facilitate the
mounting of the flow limiting valve component 13 onto the high-pressure common rail
pipe 12 as a whole. A sunk groove 13103 is provided at the intersection of the larger
end surface 13105 and the first smaller outer cylindrical portion 13106.
[0120] Optionally, as shown in FIG. 30, four transverse flow restricting orifices 13304
are provided in the second valve core 133 in order to achieve the function of the
flow limiting valve. The four flow restricting orifices have an area smaller than
the area of the axial blind hole 13302, the area of the fourth hole (the fuel outlet
hole) 13207, and the flow area formed between the fourth conical seal surface 13306
and the first sealing seat surface 13206.
[0121] Optionally, as shown in FIG. 30, the fourth conical seal surface 13306 of the second
valve core 133 is provided at the tail of the second valve core 133 adjacent to the
third conical seal surface 13305, and the fourth conical seal surface 13306 has an
angle larger than the angle of the third conical seal surface 13305, so that the flow
area between the fourth conical seal surface 13306 and the first sealing seat surface
13206 can be increased. It should be noted that the angle of each of the above tapered
surfaces refers to an angle between the tapered surface and a generatrix in the same
cross-section.
[0122] The gap between the first outer cylindrical portion 13301 and the second mating portion
13204 is formed as small as possible in order to prevent leakage of fuel from the
cavity formed between the second valve core 133 and the second mating portion 13204
into the first mating portion 13203. However, the gap should not be too small, otherwise
the operation of the second valve core 133 is hindered, and the flow limiting valve
malfunctions. Optionally, the gap between the first outer cylindrical portion 13301
and the second mating portion 13204 is between 0.02 mm and 0.04 mm.
[0123] The flow limiting valve component 13 is used in a high-pressure common rail system
for a low-speed engine, in which a combustible medium is often inferior fuel. In order
to ensure the service life and reliable function of the flow limiting valve, the second
valve core 133 is made of a high-speed tool steel material and plated with DLC at
its sections mating with the second valve body 132 (the first outer cylindrical portion
13301, the second outer cylindrical portion 13303, the third conical seal surface
13305, and the fourth conical seal surface 13306), and the second valve body 132 is
made of high-strength structural steel subjected to nitriding treatment. The high
temperature resistance and corrosion resistance of the flow limiting valve are ensured
by using such materials and heat treatment method.
[0124] In this embodiment, the second valve core 133 is pushed forward by using the fuel
feed pressure from fuel and the spring force from the second pressure regulating spring
135. When the second valve core 133 is pushed forward, the second valve core 133 seals
the fourth hole 13207 serving as a fuel outlet hole to block entry of fuel thereinto,
so that the fuel is cut off to avoid excessive fuel injection from the electronic
control fuel injector 15 or fuel leakage from the high-pressure fuel pipe, thereby
preventing damage to the diesel engine or personal injury and also preventing pollution
of the environment.
[0125] Only one or more of some embodiments of the present disclosure are described in the
foregoing embodiments, but it will be appreciated by those of ordinary skill in the
art that the present disclosure may be implemented in many other forms without departing
from its scope. Therefore, the examples and embodiments shown are considered to be
illustrative rather than limitative, and the present disclosure may encompass various
modifications and alternatives without departing from the scope of the present disclosure
as defined by the appended claims.
1. A high-pressure common rail system for a low-speed engine with multiple safety protection
functions, comprising:
an electronic control unit ECU;
an electronic control high-pressure fuel pump (1), provided with an electronic control
proportional valve (2), wherein the electronic control proportional valve (2) is configured
to adjust a proportion of feed of a low-pressure heavy fuel from a fuel tank of the
low-speed engine into the electronic control high-pressure fuel pump (1) according
to a first instruction from the ECU;
a first distribution block (6) connected to the electronic control high-pressure fuel
pump (1) via a first high-pressure fuel pipe (3);
a second distribution block (9) connected to the first distribution block (6) via
a second high-pressure fuel pipe (8);
a common rail pipe (12) connected to the second distribution block (9) via a third
high-pressure fuel pipe (10),
wherein a sensor (17) configured to detect a fuel pressure of the high-pressure heavy
fuel in the common rail pipe (12) is mounted onto the common rail pipe (12), and the
sensor (17) is connected to the ECU;
a plurality of flow limiting valve components (13) are mounted onto the common rail
pipe (12), and each of the flow limiting valve components (13) is connected to one
of electronic control fuel injectors (15) via a corresponding_fourth high-pressure
fuel pipe (14); and each of the flow limiting valve components (13) is configured
to be closed when a fuel pressure difference between the corresponding fourth high-pressure
fuel pipe (14) and the common rail pipe (12) exceeds a set pressure difference;
a pressure limiting valve component (18) is further mounted onto the common rail pipe
(12), and the pressure limiting valve component (18) is configured to be opened when
a fuel pressure in the common rail pipe (12) exceeds a first set pressure value, so
that the fuel pressure in the common rail pipe (12) is stabilized at a target pressure
value;
the first distribution block (6) is equipped with a shut-off valve component (5) and
a safety valve component (7), wherein the shut-off valve component (5) is configured
to perform a pressure relief process according to a second instruction from the ECU;
and the safety valve component (7) is configured to be opened when the shut-off valve
component (5) and the pressure limiting valve component (18) malfunction and a fuel
pressure in the common rail pipe (12) exceeds a second set pressure value; and
circulation valve components (16) are further mounted onto the common rail pipe (12)
and the electronic control fuel injectors (15), and each of the circulation valve
components (16) is configured to be opened when the low-speed engine is stopped, so
that a circulation loop is formed between a fuel tank of the low-speed engine and
the common rail pipe (12), and between the fuel tank of the low-speed engine and each
of the electronic control fuel injectors (15).
2. The system according to claim 1, wherein the electronic control high-pressure fuel
pump (1) comprises:
a pump body (101), provided with a central hole along an axial direction of the pump
body (101);
a pump cover (102), mounted onto an upper end surface of the pump body (101); and
a fuel inlet and outlet valve component (103), a plunger and barrel assembly (104),
a plunger spring (105), a lower spring seat component (106), and a guide piston component
(107), each being assembled in the central hole of the pump body (101),
wherein the electronic control proportional valve (2) is assembled on a side of the
pump body (101);
the fuel inlet and outlet valve component (103) comprises a fuel inlet valve component
(1031) and a fuel outlet valve component (1032),
wherein the fuel inlet valve component (1031) comprises a fuel inlet valve seat (10311),
a fuel inlet valve (10312), and a fuel inlet valve spring (10313),
wherein the fuel inlet valve (10312) is mounted in a central hole of the fuel inlet
valve seat (10311); the fuel inlet valve spring (10313) is positionally limited between
the fuel inlet valve (10312) and a wall of the central hole of the fuel inlet valve
seat (10311); and a conical seal is formed between the fuel inlet valve (10312) and
the fuel inlet valve seat (10311) by being pressed by the fuel inlet valve spring
(10313); and
the fuel outlet valve component (1032) comprises a fuel outlet valve seat (10321),
a fuel outlet valve (10322), a fuel outlet valve spring (10323), and a fuel outlet
valve spring seat (10324),
wherein the fuel outlet valve spring seat (10324) is mounted at an upper end of the
fuel outlet valve seat (10321); the fuel outlet valve (10322) is mounted in a central
hole of the fuel outlet valve seat (10321); the fuel outlet valve spring (10323) is
positionally limited between the fuel outlet valve (10322) and the fuel outlet valve
spring seat (10324); and a conical seal is formed between the fuel outlet valve (10322)
and the fuel outlet valve seat (10321) by being pressed by the fuel outlet valve spring
(10323),
a high-pressure fuel outlet chamber (1033) is formed between the fuel outlet valve
seat (10321) and the fuel inlet valve seat (10311);
a high-pressure fuel chamber (1041) is formed in the plunger and barrel assembly (104),
wherein the high-pressure fuel chamber (1041) communicates with the high-pressure
fuel outlet chamber (1033) via a fuel hole in the fuel inlet valve seat (10311);
the electronic control proportional valve (2) communicates with the fuel inlet hole
of the fuel inlet valve seat (10311) via a first fuel hole in the pump body (101),
and the fuel inlet hole is communicated with or disconnected from the high-pressure
fuel chamber (1041); and
the electronic control proportional valve (2) is provided with a cooling circulation
fuel passage, and cooling fuel from a cooling fuel passage of the pump body (101)
is injected into the cooling circulation fuel passage and then flows back into the
cooling fuel passage of the pump body (101).
3. The system according to claim 2, wherein the plunger and barrel assembly (104) comprises:
a plunger barrel (1042), disposed at a lower end of the fuel inlet valve seat (10311);
and
a plunger (1043), slidably inserted into a central hole of the plunger barrel (1042),
wherein the high-pressure fuel chamber (1041) is formed by the plunger barrel (1042),
the plunger (1043) and the fuel inlet valve seat (10311) together, wherein
an inner wall of the plunger barrel (1042) is provided with a first annular groove
(10421) and a second annular groove (10422);
the pump body (101) is provided with a mixed oil outlet passage and a lubricating
oil supply passage (1012), wherein the mixed oil outlet passage communicates with
the first annular groove (10421) via a mixed oil passage (10423) in the plunger barrel
(1042), and the lubricating oil supply passage (1012) communicates with the second
annular groove (10422) via a lubricating oil passage (10424) in the plunger barrel
(1042);
the first annular groove (10421) is located above the second annular groove (10422);
and the lower spring seat component (106) is disposed under the plunger and barrel
assembly (104),
wherein the lower spring seat component (106) comprises:
an outer spring seat (1061), of a boss-type structure as a whole with a central portion
thicker and an outer portion thinner, wherein the outer spring seat (1061) has an
upper end surface provided with a third counterbore (10611) with a concave spherical
surface;
an upper sphere (1062), having lower part mounted in the third counterbore (10611),
wherein a lower end surface of the upper sphere (1062) is provided with a convex spherical
surface mating with the concave spherical surface; and
an inner spring seat (1063), sleeved on an upper part of the upper sphere (1062),
wherein the inner spring seat (1063) has a first axial through hole (10631) penetrating
its upper and lower end surfaces,
wherein a lower cylindrical head (10431) of the plunger (1043) is positionally limited
in the first axial through hole (10631), and the lower cylindrical head (10431) of
the plunger (1043) has a lower end surface abutting against an upper end surface of
the upper sphere (1062).
4. The system according to claim 3, wherein
a spherical hole (10612) is provided in a center of the third counterbore (10611),
a third annular groove (10613) is provided in a lower end surface of the outer spring
seat (1061), and the spherical hole (10612) communicates with the third annular groove
(10613) via a lubricating oil inlet conduit (10614);
an outer surface of the outer spring seat (1061) is formed as a tapered surface, which
is provided with a lubricating oil outlet passage (10615), wherein the lubricating
oil outlet passage (10615) communicates with the lower end surface of the outer spring
seat (1061); and the lubricating oil outlet passage (10615) is provided obliquely;
a circumferential annular groove (10621) is arranged in a circumferential direction
of the upper sphere (1062);
a positioning pin (1064) is mounted in the circumferential annular groove (10621)
through a positioning pin hole (10616) of the outer spring seat (1061);
a spacing between upper and lower surfaces of the circumferential annular groove (10621)
is greater than a cylindrical diameter of a part of the positioning pin (1064) that
is located in the circumferential annular groove (10621);
the first axial through hole (10631) provided inside the inner spring seat (1063)
comprises:
a seventh hole (10632), an eighth hole (10633), and a ninth hole (10634) having diameters
gradually increasing from top to bottom, wherein
a first guide hole (10635) with a gradually increasing diameter is provided between
the eighth hole (10633) and the ninth hole (10634);
a second guide hole (10636) with a gradually increasing diameter is provided on a
side of the ninth hole (10634) facing the upper sphere (1062), wherein
walls of the first guide hole (10635) and the second guide hole (10636) are formed
as tapered guide surfaces (10637);
an upper part of the upper sphere (1062) is positioned partially in the ninth hole
(10634) through the second guide hole (10636);
a gap greater than or equal to 1 mm is formed between the upper sphere (1062) and
the ninth hole (10634); and
a gap greater than or equal to 1 mm is formed between the third counterbore (10611)
and the upper sphere (1062).
5. The system according to any one of claims 2 to 4, wherein the electronic control high-pressure
fuel pump (1) further comprises: an upper spring seat (109), sleeved on the plunger
barrel (1042) and located at an upper end of the inner spring seat (1063); the plunger
spring (105) comprises: a first plunger spring (1051), compressively mounted between
the upper spring seat (109) and the outer spring seat (1061); and a second plunger
spring (1052), compressively mounted between the upper spring seat (109) and the inner
spring seat (1063);
preferably, diameters of the concave spherical surface in the outer spring seat (1061)
and the convex spherical surface of the upper sphere (1062) are each 20 to 100 times
a diameter of the plunger (1043).
6. The system according to any one of claims 2 to 5, wherein the guide piston component
(107) comprises:
a guide piston (1071), provided with a first mounting hole (10711) at a central position
of its upper end surface and provided with a second mounting hole (10712) at its lower
end surface, wherein the first mounting hole (10711) and the second mounting hole
(10712) communicate with each other via a communicating hole (10713), and the lower
spring seat component (106) is mounted in the first mounting hole (10711);
a roller component (1072), comprising a roller (10728) mounted in the second mounting
hole (10712), a roller bushing (10722) interference-fitted in the roller (10728),
and thrust bearings (10723) interference-fitted at both ends of the roller (10728)
in an axial direction, wherein an annular groove (10724) is provided in the axial
direction of the roller (10728), and an arc-shaped transitional connection is formed
between a bottom of the annular groove (10724) and an end surface of the roller (10728)
in the axial direction; and
a roller pin (1073), fitted in the roller bushing (10722) with a clearance therebetween,
wherein
a boss (10714) is disposed protruding from a wall of the second mounting hole (10712),
and the boss (10714) is in contact with the thrust bearing (10723); and
a plurality of first radial oil grooves (10715) are uniformly arranged in the boss
(10714) along its radial direction, and the first radial oil grooves (10715) are provided
with respect to the thrust bearing (10723).
7. The system according to claim 6, wherein
an outer surface of the roller pin (1073) is provided as a cylindrical surface, which
is provided with first waist-shaped grooves (10731) and second waist-shaped grooves
(10732) at two positions, respectively, wherein the first waist-shaped grooves (10731)
and the second waist-shaped grooves (10732) are provided in the middle positions of
the roller pin (1073);
a small-angle wedge-shaped groove with an angle between 5° and 20° is formed between
each of the first waist-shaped grooves (10731) located on an outer layer and an outer
surface of the roller bushing (10722), and a second oil hole (10733) is provided in
each of the second waist-shaped grooves (10732) located in an inner layer,
wherein two second oil holes (10733) at the two positions communicate with each other
via a lubricating oil outlet passage, and the two second oil holes (10733) are provided
at an angle of 70° to 120°;
an outer surface of the guide piston (1071) is provided as a cylindrical surface,
which is provided with a plurality of partial circumferential oil grooves (10729)
and circumferential oil grooves (10725), a first axial oil groove (10716) and a vertical
groove (10717), wherein the vertical groove (10717) is provided in each of the circumferential
oil grooves (10725), and the vertical groove (10717) communicates with the partial
circumferential oil grooves (10729) via the first axial oil groove (10716);
the cylindrical surface is further provided with an inclined hole (10718) having two
ends communicating with one of the circumferential oil grooves (10725) and an inner
wall of the second mounting hole (10712), respectively;
the cylindrical surface is further provided with a second axial oil groove (10719)
communicating with one of the circumferential oil grooves (10725);
the cylindrical surface is further provided with a first straight hole (10720) and
a second straight hole (10721) connected to each other, the first straight hole (10720)
communicates with the first axial oil groove (10716), and the second straight hole
(10721) communicates with the first mounting hole (10711); and
a lubricating oil inlet passage (10735) is provided in the outer cylindrical surface
of the roller pin (1073), wherein the lubricating oil inlet passage (10735) is provided
with respect to the inclined hole (10718), and the lubricating oil inlet passage (10735)
communicates with the lubricating oil outlet passage.
8. The system according to claim 7, wherein the outer cylindrical surface of the roller
pin (1073) is provided with a diamond-like carbon DLC coating; the roller bushing
(10722) is made of a copper alloy; the thrust bearing (10723) is made of a copper
alloy; forced lubrication and dynamic pressure lubrication are used between the roller
pin (1073) and the roller bushing (10722); and forced lubrication and dynamic pressure
lubrication are used between the thrust bearing (10723) and the boss (10714).
9. The system according to any one of claims 1 to 8, wherein
the common rail pipe (12) has a fuel inlet conduit (1201) and a fuel return conduit
(1202) penetrating both ends thereof;
a fuel inlet end cap (121) is fixed at one end of the common rail pipe (12), wherein
the fuel inlet end cap (121) is provided with a fuel inlet port communicating with
the fuel inlet conduit (1201);
an end cover (122) is fixed at the other end of the common rail pipe (12), wherein
the end cover (122) is provided with a fuel outlet port communicating with the fuel
inlet conduit (1201), and the circulation valve component (16) mounted onto the common
rail pipe (12) is fixed to the end cover (122);
the pressure limiting valve component (18) and the plurality of flow limiting valve
components (13) communicate with the fuel inlet conduit (1201), respectively, and
the pressure limiting valve component (18) and the plurality of flow limiting valve
components (13) communicate with the fuel return conduit (1202), respectively.
10. The system according to claim 9, wherein the circulation valve component (16) mounted
onto the common rail pipe (12) comprises:
a first valve body (161) fixed to the end cover (122), which has a lower end surface
provided with a first central hole (1601) communicating with the fuel outlet port,
and an upper end surface provided with a second central hole (1602), wherein the first
central hole (1601) communicates with the second central hole (1602);
a first valve core (162), which is slidably inserted into the first central hole (1601)
from the lower end surface of the first valve body (161) and partially located in
the second central hole (1602);
a lower spring seat (164), which is sleeved on the part of the first valve core (162)
that is located in the second central hole (1602), and which is fixedly connected
to the first valve core (162), wherein a first cavity is formed between the lower
spring seat (164) and a bottom of the second central hole (1602);
a gland (167), which is fixed to the upper end surface of the first valve body (161),
wherein the gland (167) has an upper end surface provided with a threaded hole (1603);
a fuel return joint (168), which is partially fixed in the threaded hole (1603); and
a first pressure regulating spring (169), which is positionally limited between the
lower spring seat (164) and the gland (167), wherein
the first valve body (161) is provided with a first fuel return passage (1605) communicating
with the first central hole (1601), the gland (167) is provided with a second fuel
return passage (1606) communicating with the first fuel return passage (1605), the
fuel return joint (168) is provided with a third fuel return passage (1607) communicating
with the second fuel return passage (1606), and a fuel circulation passage is formed
by the first fuel return passage (1605), the second fuel return passage (1606) and
the third fuel return passage (1607);
the first valve body (161) is provided with a first air inlet passage (1608) communicating
with the first cavity, and the gland (167) is provided with a second air inlet passage
(1629) communicating with the first air inlet passage (1608) and an air inlet port
(1630) communicating with the second air inlet passage (1629); and
when a spring force from the first pressure regulating spring (169) is less than or
equal to a pressure sum of a pressure of a gas introduced into the first cavity and
a pressure of fuel fed into a fuel inlet end of the first central hole (1601), a conical
seal is formed between the first valve core (162) and the first central hole (1601),
and the conical seal is formed at a position below a position where the first fuel
return passage (1605) is connected to the first central hole (1601).
11. The system according to claim 10, wherein a first conical seal surface (1611) and
an external thread (1612) are provided at a top of a part of the first valve core
(162) that is located in the second central hole (1602), wherein the external thread
(1612) is located at an upper end of the first conical seal surface (1611); the lower
spring seat (164) passes through the external thread (1612) and then is sleeved on
the first conical seal surface (1611), and the lower spring seat (164) has a second
conical seal surface (1613) that forms a conical seal with the first conical seal
surface (1611); the lower spring seat (164) is pressed by a nut (1614) sleeved on
a periphery of the external thread (1612); and the first pressure regulating spring
(169) is sleeved on the nut (1614) and fixed to the lower spring seat (164).
12. The system according to claim 10 or 11, wherein the fuel return joint (168) is screwed
fixedly in the threaded hole (1603); an upper end surface of the gland (167) is provided
with a first flat sealing surface (1615) at an opening of the threaded hole (1603);
and the fuel return joint (168) is provided with a second flat sealing surface (1616)
that forms a planar seal with the first flat sealing surface (1615); and
a third cavity is formed between a lower end surface of the fuel return joint (168)
and a bottom of the threaded hole (1603), wherein the third cavity communicates with
the second fuel return passage (1606) and the third fuel return passage (1607), respectively,
and a maximum flow area of the third cavity is greater than a maximum flow area of
the second fuel return passage (1606).
13. The system according to any one of claims 10 to 12, wherein when the first valve core
(162) moves upward to a top dead center position in the first valve body (161), a
distance H2 between lower end surfaces of the first valve body (161) and the first
valve core (162) is smaller than a distance H1 between a lower end surface of the
lower spring seat (164) and the bottom of the second central hole (1602);
the lower spring seat (164) comprises a third central hole (1617) configured to limit
a position of the first pressure regulating spring and a fourth central hole (1618)
configured to mate with the first valve core (162), wherein the fourth central hole
(1618) has a diameter larger than a diameter of the external thread (1612); and the
lower spring seat (164) has an outer diameter the same as a diameter of the second
central hole (1602).
14. The system according to any one of claims 1 to 13, wherein each of the flow limiting
valve components (13) comprises a valve seat (131) connected to the common rail pipe
(12), a second valve body (132), a second valve core (133), and a second pressure
regulating spring (135), wherein
the valve seat (131) has a first fuel inlet hole (13101) communicating with the common
rail pipe (12);
the second valve body (132) has a second axial through hole (13209) penetrating its
upper and lower end surfaces, and the valve seat (131) is partially press-fitted into
the second axial through hole (13209) from a lower end surface of the second valve
body (132);
the second valve core (133) is mounted in the second axial through hole (13209) and
disposed above the valve seat (131);
the second valve core (133) has an axial blind hole (13302) communicating with the
first fuel inlet hole (13101), and a cavity is formed between an upper end of the
second valve core (133) and the second axial through hole (13209);
the second valve core (133) is provided therein with a transverse flow restricting
orifice (13304) communicating the axial blind hole (13302) with the cavity;
the second pressure regulating spring (135) is sleeved on the second valve core (133)
and is positionally limited in the cavity;
a head of the upper end of the second valve core (133) has a third conical seal surface
(13305) and a fourth conical seal surface (13306) connected to each other; and
a first sealing seat surface (13206) that is able to form a conical seal with the
third conical seal surface (13305) is formed at a wall of the second axial through
hole (13209), and a gap is able to be formed between the first sealing seat surface
(13206) and the fourth conical seal surface (13306).
15. The system according to any one of claims 1 to 14, wherein the pressure limiting valve
component (18) comprises a third valve body (181), a third valve core (182), a third
pressure regulating spring (185), and a fuel pipe joint (186), wherein
the third valve body (181) is provided therein with a first-stage hole (18101), a
second-stage hole (18102), a third-stage hole (18104), and a fourth-stage hole (18105)
communicating in sequence from bottom to top;
the third valve core (182) has a head, which is slidably inserted from the fourth-stage
hole (18105), through the third-stage hole (18104) and then partially located inside
the second-stage hole (18102), and a conical seal is able to be formed between the
third valve core (182) and the second-stage hole (18102);
a first gap allowing a fuel to pass therethrough is formed between the third valve
core (182) and the third-stage hole (18104), and a second gap allowing the fuel to
pass therethrough is formed between the third valve core (182) and the fourth-stage
hole (18105); and
the fuel pipe joint (186) is fixed at an upper end of the third valve body (181),
the fuel pipe joint (186) is provided therein with a first counterbore (18601), a
second counterbore (18602), and a fuel outlet hole (18603) communicating in sequence
from bottom to top, and the third pressure regulating spring (185) is positionally
limited between the third valve core (182) and the second counterbore (18602).
1. Hochdruck-Common-Rail-System für einen Motor mit geringer Drehzahl mit mehreren Sicherheitsschutzfunktionen,
aufweisend:
ein elektronisches Steuergerät ECU;
eine elektronisch gesteuerte Kraftstoffhochdruckpumpe (1), die mit einem elektronisch
gesteuerten Proportionalventil (2) versehen ist, wobei das elektronisch gesteuerte
Proportionalventil (2) derart konfiguriert ist, dass es einen Anteil der Zufuhr eines
Schweröls mit niedrigem Druck aus einem Kraftstofftank des Motors mit geringer Drehzahl
in die elektronisch gesteuerte Kraftstoffhochdruckpumpe (1) gemäß einem ersten Befehl
von der ECU einstellt;
einen ersten Verteilerblock (6), der über eine erste Kraftstoffhochdruckleitung (3)
mit der elektronisch gesteuerten Kraftstoffhochdruckpumpe (1) verbunden ist;
einen zweiten Verteilerblock (9), der über eine zweite Kraftstoffhochdruckleitung
(8) mit dem ersten Verteilerblock (6) verbunden ist;
eine Common-Rail-Leitung (12), die über eine dritte Kraftstoffhochdruckleitung (10)
mit dem zweiten Verteilerblock (9) verbunden ist,
wobei ein Sensor (17), der derart konfiguriert ist, dass er einen Kraftstoffdruck
des Schweröls mit hohem Druck in der Common-Rail-Leitung (12) erfasst, an der Common-Rail-Leitung
(12) montiert ist, und der Sensor (17) mit der ECU verbunden ist;
eine Vielzahl von Durchflussbegrenzungsventilkomponenten (13) an der Common-Rail-Leitung
(12) montiert sind und jede der Durchflussbegrenzungsventilkomponenten (13) mit einer
von elektronisch gesteuerten Kraftstoffeinspritzdüsen (15) über eine entsprechende
vierte Hochdruckkraftstoffleitung (14) verbunden ist; und jede der Durchflussbegrenzungsventilkomponenten
(13) derart konfiguriert ist, dass sie geschlossen wird, wenn eine Kraftstoffdruckdifferenz
zwischen der entsprechenden vierten Hochdruckkraftstoffleitung (14) und der Common-Rail-Leitung
(12) eine eingestellte Druckdifferenz überschreitet;
eine Druckbegrenzungsventilkomponente (18) ferner an der Common-Rail-Leitung (12)
montiert ist, und die Druckbegrenzungsventilkomponente (18) derart konfiguriert ist,
dass sie geöffnet wird, wenn ein Kraftstoffdruck in der Common-Rail-Leitung (12) einen
ersten eingestellten Druckwert überschreitet, so dass der Kraftstoffdruck in der Common-Rail-Leitung
(12) bei einem Zieldruckwert stabilisiert wird;
der erste Verteilerblock (6) mit einer Absperrventilkomponente (5) und einer Sicherheitsventilkomponente
(7) ausgestattet ist, wobei die Absperrventilkomponente (5) derart konfiguriert ist,
dass sie einen Druckentlastungsprozess gemäß einer zweiten Anweisung von der ECU durchführt;
und die Sicherheitsventilkomponente (7) so konfiguriert ist, dass sie geöffnet wird,
wenn die Absperrventilkomponente (5) und die Druckbegrenzungsventilkomponente (18)
eine Fehlfunktion aufweisen und ein Kraftstoffdruck in der Common-Rail-Leitung (12)
einen zweiten eingestellten Druckwert überschreitet; und
Zirkulationsventilkomponenten (16) ferner an der Common-Rail-Leitung (12) und den
elektronisch gesteuerten Kraftstoffeinspritzdüsen (15) montiert sind, und jede der
Zirkulationsventilkomponenten (16) derart konfiguriert ist, dass sie geöffnet wird,
wenn der Motor mit geringer Drehzahl gestoppt wird, so dass ein Zirkulationskreislauf
zwischen einem Kraftstofftank des Motors mit geringer Drehzahl und der Common-Rail-Leitung
(12) und zwischen dem Kraftstofftank des Motors mit geringer Drehzahl und jeder der
elektronisch gesteuerten Kraftstoffeinspritzdüsen (15) gebildet wird.
2. System nach Anspruch 1, wobei die elektronisch gesteuerte Kraftstoffhochdruckpumpe
(1) aufweist:
einen Pumpenkörper (101), der mit einem mittleren Loch entlang einer axialen Richtung
des Pumpenkörpers (101) versehen ist;
eine Pumpenabdeckung (102), die an einer oberen Endfläche des Pumpenkörpers (101)
montiert ist; und
eine Kraftstoffeinlass- und -auslassventilkomponente (103), eine Kolben- und Zylinderanordnung
(104), eine Kolbenfeder (105), eine untere Federsitzkomponente (106) und eine Führungskolbenkomponente
(107), die jeweils in dem mittigen Loch des Pumpenkörpers (101) montiert sind,
wobei das elektronisch gesteuerte Proportionalventil (2) auf einer Seite des Pumpenkörpers
(101) montiert ist;
die Kraftstoffeinlass- und -auslassventilkomponente (103) eine Kraftstoffeinlassventilkomponente
(1031) und eine Kraftstoffauslassventilkomponente (1032) aufweist,
wobei die Kraftstoffeinlassventilkomponente (1031) einen Kraftstoffeinlassventilsitz
(10311), ein Kraftstoffeinlassventil (10312) und eine Kraftstoffeinlassventilfeder
(10313) aufweist,
wobei das Kraftstoffeinlassventil (10312) in einem mittigen Loch des Kraftstoffeinlassventilsitzes
(10311) montiert ist; die Kraftstoffeinlassventilfeder (10313) hinsichtlich ihrer
Position zwischen dem Kraftstoffeinlassventil (10312) und einer Wand des mittigen
Lochs des Kraftstoffeinlassventilsitzes (10311) eingeschränkt wird; und eine konische
Dichtung zwischen dem Kraftstoffeinlassventil (10312) und dem Kraftstoffeinlassventilsitz
(10311) gebildet wird, indem sie von der Kraftstoffeinlassventilfeder (10313) gedrückt
wird; und
die Kraftstoffauslassventilkomponente (1032) einen Kraftstoffauslassventilsitz (10321),
ein Kraftstoffauslassventil (10322), eine Kraftstoffauslassventilfeder (10323) und
einen Kraftstoffauslassventilfedersitz (10324) umfasst,
wobei der Kraftstoffauslassventilfedersitz (10324) an einem oberen Ende des Kraftstoffauslassventilsitzes
(10321) montiert ist; das Kraftstoffauslassventil (10322) in einem mittigen Loch des
Kraftstoffauslassventilsitzes (10321) montiert ist; die Kraftstoffauslassventilfeder
(10323) hinsichtlich ihrer Position zwischen dem Kraftstoffauslassventil (10322) und
dem Kraftstoffauslassventilfedersitz (10324) eingeschränkt wird; und eine konische
Dichtung zwischen dem Kraftstoffauslassventil (10322) und dem Kraftstoffauslassventilsitz
(10321) gebildet wird, indem sie von der Kraftstoffauslassventilfeder (10323) gedrückt
wird,
eine Hochdruckkraftstoffauslasskammer (1033) zwischen dem Kraftstoffauslassventilsitz
(10321) und dem Kraftstoffeinlassventilsitz (10311) gebildet wird;
eine Hochdruckkraftstoffkammer (1041) in der Kolben- und Zylinderanordnung (104) ausgebildet
ist, wobei die Hochdruckkraftstoffkammer (1041) mit der Hochdruckkraftstoffauslasskammer
(1033) über ein Kraftstoffloch in dem Kraftstoffeinlassventilsitz (10311) in Verbindung
steht;
das elektronisch gesteuerte Proportionalventil (2) mit dem Kraftstoffeinlassloch des
Kraftstoffeinlassventilsitzes (10311) über ein erstes Kraftstoffloch in dem Pumpenkörper
(101) in Verbindung steht und das Kraftstoffeinlassloch mit der Hochdruckkraftstoffkammer
(1041) in Verbindung steht oder von dieser getrennt ist; und
das elektronisch gesteuerte Proportionalventil (2) mit einem Kühlkreislauf-Kraftstoffdurchgang
versehen ist und Kühlkraftstoff aus einem Kühlkraftstoffdurchgang des Pumpenkörpers
(101) in den Kühlkreislauf-Kraftstoffdurchgang eingespritzt wird und dann in den Kühlkraftstoffdurchgang
des Pumpenkörpers (101) zurückfließt.
3. System nach Anspruch 2, wobei die Kolben- und Zylinderanordnung (104) aufweist:
einen Kolbenzylinder (1042), der an einem unteren Ende des Kraftstoffeinlassventilsitzes
(10311) angeordnet ist; und
einen Kolben (1043), der verschiebbar in ein mittiges Loch des Kolbenzylinders (1042)
eingesetzt ist, wobei die Hochdruckkraftstoffkammer (1041) durch den Kolbenzylinder
(1042), den Kolben (1043) und den Kraftstoffeinlassventilsitz (10311) zusammen gebildet
wird, wobei
eine Innenwand des Kolbenzylinders (1042) mit einer ersten Ringnut (10421) und einer
zweiten Ringnut (10422) versehen ist;
der Pumpenkörper (101) mit einem Mischöl-Auslassdurchgang und einem Schmieröl-Zufuhrdurchgang
(1012) versehen ist, wobei der Mischöl-Auslassdurchgang mit der ersten ringförmigen
Nut (10421) über einen Mischöl-Durchgang (10423) in dem Kolbenzylinder (1042) in Verbindung
steht, und der Schmieröl-Zufuhrdurchgang (1012) mit der zweiten ringförmigen Nut (10422)
über einen Schmieröl-Durchgang (10424) in dem Kolbenzylinder (1042) in Verbindung
steht;
die erste ringförmige Nut (10421) über der zweiten ringförmigen Nut (10422) angeordnet
ist; und die untere Federsitzkomponente (106) unter der Kolben- und Zylinderanordnung
(104) angeordnet ist,
wobei die untere Federsitzkomponente (106) aufweist:
einen äußeren Federsitz (1061) mit einer insgesamt nabenartigen Struktur mit einem
mittleren Abschnitt, der dicker ist, und einem äußeren Abschnitt, der dünner ist,
wobei der äußere Federsitz (1061) eine obere Endfläche aufweist, die mit einem dritten
Senkloch (10611) mit einer konkaven, kugelförmigen Oberfläche versehen ist;
eine obere Kugel (1062), deren unterer Teil in dem dritten Senkloch (10611) montiert
ist, wobei eine untere Endfläche der oberen Kugel (1062) mit einer konvexen sphärischen
Oberfläche versehen ist, die mit der konkaven sphärischen Oberfläche zusammenpasst;
und
einen inneren Federsitz (1063), der auf einen oberen Teil der oberen Kugel (1062)
aufgeschoben ist, wobei der innere Federsitz (1063) ein erstes axiales Durchgangsloch
(10631) aufweist, das seine oberen und unteren Endflächen durchdringt,
wobei ein unterer zylindrischer Kopf (10431) des Kolbens (1043) in dem ersten axialen
Durchgangsloch (10631) hinsichtlich seiner Position eingeschränkt wird und der untere
zylindrische Kopf (10431) des Kolbens (1043) eine untere Endfläche aufweist, die an
einer oberen Endfläche der oberen Kugel (1062) anliegt.
4. System nach Anspruch 3, wobei
ein kugelförmiges Loch (10612) in einer Mitte des dritten Senklochs (10611) vorgesehen
ist, eine dritte ringförmige Nut (10613) in einer unteren Endfläche des äußeren Federsitzes
(1061) vorgesehen ist und das kugelförmige Loch (10612) mit der dritten ringförmigen
Nut (10613) über eine Schmieröleinlassleitung (10614) in Verbindung steht;
eine Außenfläche des äußeren Federsitzes (1061) als eine sich verjüngende Fläche ausgebildet
ist, die mit einem Schmierölauslassdurchgang (10615) versehen ist, wobei der Schmierölauslassdurchgang
(10615) mit der unteren Endfläche des äußeren Federsitzes (1061) in Verbindung steht;
und der Schmierölauslassdurchgang (10615) schräg vorgesehen ist;
eine umlaufende Ringnut (10621) in einer Umfangsrichtung der oberen Kugel (1062) angeordnet
ist;
ein Positionierungsstift (1064) in der ringförmigen Umfangsnut (10621) durch ein Positionierungsstiftloch
(10616) des äußeren Federsitzes (1061) montiert ist;
ein Abstand zwischen der oberen und der unteren Fläche der ringförmigen Umfangsnut
(10621) größer ist als ein zylindrischer Durchmesser eines Teils des Positionierungsstifts
(1064), der sich in der ringförmigen Umfangsnut (10621) befindet;
das erste axiale Durchgangsloch (10631), das im Inneren des inneren Federsitzes (1063)
vorgesehen ist, aufweist:
ein siebtes Loch (10632), ein achtes Loch (10633) und ein neuntes Loch (10634) mit
von oben nach unten allmählich zunehmenden Durchmessern, wobei
ein erstes Führungsloch (10635) mit einem allmählich zunehmenden Durchmesser zwischen
dem achten Loch (10633) und dem neunten Loch (10634) vorgesehen ist;
ein zweites Führungsloch (10636) mit einem allmählich zunehmenden Durchmesser auf
einer der oberen Kugel (1062) zugewandten Seite des neunten Lochs (10634) vorgesehen
ist, wobei
Wände des ersten Führungslochs (10635) und des zweiten Führungslochs (10636) als konische
Führungsflächen (10637) ausgebildet sind;
ein oberer Teil der oberen Kugel (1062) teilweise in dem neunten Loch (10634) durch
das zweite Führungsloch (10636) positioniert ist;
zwischen der oberen Kugel (1062) und dem neunten Loch (10634) ein Spalt mit größer
oder gleich 1 mm gebildet ist; und
zwischen dem dritten Senkloch (10611) und der oberen Kugel (1062) ein Spalt mit zumindest
1 mm gebildet wird.
5. System nach einem der Ansprüche 2 bis 4, wobei die elektronisch gesteuerte Kraftstoffhochdruckpumpe
(1) ferner aufweist: einen oberen Federsitz (109), der auf den Kolbenzylinder (1042)
aufgeschoben ist und sich an einem oberen Ende des inneren Federsitzes (1063) befindet;
die Kolbenfeder (105) aufweist: eine erste Kolbenfeder (1051), die unter Druck zwischen
dem oberen Federsitz (109) und dem äußeren Federsitz (1061) montiert ist; und eine
zweite Kolbenfeder (1052), die unter Druck zwischen dem oberen Federsitz (109) und
dem inneren Federsitz (1063) montiert ist;
bevorzugt die Durchmesser der konkaven Kugeloberfläche in dem äußeren Federsitz (1061)
und der konvexen Kugeloberfläche der oberen Kugel (1062) jeweils das 20- bis 100-fache
eines Durchmessers des Kolbens (1043) betragen.
6. System nach einem der Ansprüche 2 bis 5, wobei die Führungskolbenkomponente (107)
aufweist:
einen Führungskolben (1071), der mit einem ersten Montageloch (10711) an einer mittigen
Position seiner oberen Endfläche und mit einem zweiten Montageloch (10712) an seiner
unteren Endfläche versehen ist, wobei das erste Montageloch (10711) und das zweite
Montageloch (10712) über ein Verbindungsloch (10713) miteinander kommunizieren und
die untere Federsitzkomponente (106) in dem ersten Montageloch (10711) montiert ist;
eine Rollenkomponente (1072), die eine Rolle (10728), die in dem zweiten Montageloch
(10712) montiert ist, eine Rollenbuchse (10722), die mit Presspassung in die Rolle
(10728) eingesetzt ist, und Drucklager (10723), die mit Presspassung an beiden Enden
der Rolle (10728) in einer axialen Richtung eingesetzt sind, aufweist, wobei eine
ringförmige Nut (10724) in der axialen Richtung der Rolle (10728) vorgesehen ist und
eine bogenförmige Übergangsverbindung zwischen einem Boden der ringförmigen Nut (10724)
und einer Endfläche der Rolle (10728) in der axialen Richtung gebildet ist; und
einen Rollenstift (1073), der in die Rollenbuchse (10722) mit einem Spiel dazwischen
eingesetzt ist, wobei
eine Nabe (10714) angeordnet ist, die von einer Wand des zweiten Montagelochs (10712)
vorsteht, und die Nabe (10714) in Kontakt mit dem Drucklager (10723) ist; und
eine Vielzahl von ersten radialen Ölnuten (10715) gleichmäßig in der Nabe (10714)
entlang ihrer radialen Richtung angeordnet sind und die ersten radialen Ölnuten (10715)
in Bezug auf das Drucklager (10723) bereitgestellt sind.
7. System nach Anspruch 6, wobei
eine äußere Oberfläche des Rollenstifts (1073) als eine zylindrische Oberfläche vorgesehen
ist, die mit ersten taillenförmigen Nuten (10731) und zweiten taillenförmigen Nuten
(10732) an jeweils zwei Positionen versehen ist, wobei die ersten taillenförmigen
Nuten (10731) und die zweiten taillenförmigen Nuten (10732) in den mittleren Positionen
des Rollenstifts (1073) vorgesehen sind;
eine kleinwinklige keilförmige Nut mit einem Winkel zwischen 5° und 20° zwischen jeder
der ersten taillenförmigen Nuten (10731), die sich auf einer äußeren Schicht befinden,
und einer äußeren Oberfläche der Rollenbuchse (10722) ausgebildet ist, und ein zweites
Ölloch (10733) in jeder der zweiten taillenförmigen Nuten (10732), die sich in einer
inneren Schicht befinden, vorgesehen ist,
wobei zwei zweite Öllöcher (10733) an den zwei Positionen über einen Schmierölauslassdurchgang
miteinander in Verbindung stehen, und die zwei zweiten Öllöcher (10733) in einem Winkel
von 70° bis 120° bereitgestellt sind;
eine Außenfläche des Führungskolbens (1071) als eine zylindrische Fläche bereitgestellt
ist, die mit einer Vielzahl von Teilumfangsölnuten (10729) und Umfangsölnuten (10725),
einer ersten Axialölnut (10716) und einer Vertikalnut (10717) versehen ist, wobei
die vertikale Nut (10717) in jeder der Umfangsölnuten (10725) vorgesehen ist und die
vertikale Nut (10717) mit den Teilumfangsölnuten (10729) über die erste axiale Ölnut
(10716) in Verbindung steht;
die zylindrische Oberfläche ferner mit einem geneigten Loch (10718) versehen ist,
das zwei Enden hat, die mit einer der umlaufenden Ölnuten (10725) bzw. einer Innenwand
des zweiten Montagelochs (10712) in Verbindung stehen;
die zylindrische Oberfläche ferner mit einer zweiten axialen Ölnut (10719) versehen
ist, die mit einer der Umfangsölnuten (10725) in Verbindung steht;
die zylindrische Oberfläche ferner mit einem ersten geraden Loch (10720) und einem
zweiten geraden Loch (10721) versehen ist, die miteinander verbunden sind, das erste
gerade Loch (10720) mit der ersten axialen Ölnut (10716) in Verbindung steht und das
zweite gerade Loch (10721) mit dem ersten Montageloch (10711) in Verbindung steht;
und
ein Schmieröleinlassdurchgang (10735) in der äußeren zylindrischen Oberfläche des
Rollenstifts (1073) vorgesehen ist, wobei der Schmieröleinlassdurchgang (10735) in
Bezug auf das geneigte Loch (10718) vorgesehen ist und der Schmieröleinlassdurchgang
(10735) mit dem Schmierölauslassdurchgang in Verbindung steht.
8. System nach Anspruch 7, wobei die äußere zylindrische Oberfläche des Rollenstifts
(1073) mit einer diamantartigen Kohlenstoff-DLC-Beschichtung versehen ist; die Rollenbuchse
(10722) aus einer Kupferlegierung hergestellt ist; das Drucklager (10723) aus einer
Kupferlegierung hergestellt ist; zwischen dem Rollenstift (1073) und der Rollenbuchse
(10722) eine Zwangsschmierung und eine dynamische Druckschmierung verwendet wird;
und zwischen dem Drucklager (10723) und der Nabe (10714) eine Zwangsschmierung und
eine dynamische Druckschmierung verwendet wird.
9. System nach einem der Ansprüche 1 bis 8, wobei
die Common-Rail-Leitung (12) eine Kraftstoffeinlassleitung (1201) und eine Kraftstoffrückführleitung
(1202) aufweist, die beide Enden durchdringen;
eine Kraftstoffeinlass-Endkappe (121) an einem Ende der Common-Rail-Leitung (12) befestigt
ist, wobei die Kraftstoffeinlass-Endkappe (121) mit einem Kraftstoffeinlassanschluss
versehen ist, der mit der Kraftstoffeinlassleitung (1201) in Verbindung steht;
eine Endabdeckung (122) an dem anderen Ende der Common-Rail-Leitung (12) befestigt
ist, wobei die Endabdeckung (122) mit einem Kraftstoffauslassanschluss versehen ist,
der mit der Kraftstoffeinlassleitung (1201) in Verbindung steht, und die an der Common-Rail-Leitung
(12) montierte Zirkulationsventilkomponente (16) an der Endabdeckung (122) befestigt
ist;
die Druckbegrenzungsventilkomponente (18) und die Vielzahl von Durchflussbegrenzungsventilkomponenten
(13) jeweils mit der Kraftstoffeinlassleitung (1201) in Verbindung stehen, und die
Druckbegrenzungsventilkomponente (18) und die Vielzahl von Durchflussbegrenzungsventilkomponenten
(13) jeweils mit der Kraftstoffrückführleitung (1202) in Verbindung stehen.
10. System nach Anspruch 9, wobei die an der Common-Rail-Leitung (12) montierte Zirkulationsventilkomponente
(16) aufweist:
einen ersten Ventilkörper (161), der an der Endabdeckung (122) befestigt ist, der
eine untere Endfläche, die mit einem ersten mittigen Loch (1601) versehen ist, das
mit dem Kraftstoffauslassanschluss in Verbindung steht, und eine obere Endfläche aufweist,
die mit einem zweiten mittigen Loch (1602) versehen ist, wobei das erste mittige Loch
(1601) mit dem zweiten mittigen Loch (1602) in Verbindung steht;
einen ersten Ventilkern (162), der von der unteren Endfläche des ersten Ventilkörpers
(161) aus gleitend in das erste mittige Loch (1601) eingeführt ist und sich teilweise
in dem zweiten mittigen Loch (1602) befindet;
einen unteren Federsitz (164), der auf den Teil des ersten Ventilkerns (162) aufgeschoben
ist, der sich in dem zweiten mittigen Loch (1602) befindet, und der fest mit dem ersten
Ventilkern (162) verbunden ist, wobei ein erster Hohlraum zwischen dem unteren Federsitz
(164) und einem Boden des zweiten mittigen Lochs (1602) ausgebildet ist;
eine Stopfbuchse (167), die an der oberen Endfläche des ersten Ventilkörpers (161)
befestigt ist, wobei die Stopfbuchse (167) eine obere Endfläche hat, die mit einem
Gewindeloch (1603) versehen ist;
einen Kraftstoffrückführanschluss (168), der teilweise in dem Gewindeloch (1603) befestigt
ist; und
eine erste Druckregelungsfeder (169), die zwischen dem unteren Federsitz (164) und
der Stopfbuchse (167) hinsichtlich ihrer Position eingeschränkt wird, wobei
der erste Ventilkörper (161) mit einem ersten Kraftstoffrückführdurchgang (1605) versehen
ist, der mit dem ersten mittigen Loch (1601) in Verbindung steht, die Stopfbuchse
(167) mit einem zweiten Kraftstoffrückführdurchgang (1606) versehen ist, der mit dem
ersten Kraftstoffrückführdurchgang (1605) in Verbindung steht, der Kraftstoffrückführanschluss
(168) mit einem dritten Kraftstoffrückführdurchgang (1607) versehen ist, der mit dem
zweiten Kraftstoffrückführdurchgang (1606) in Verbindung steht, und ein Kraftstoffzirkulationsdurchgang
durch den ersten Kraftstoffrückführdurchgang (1605), den zweiten Kraftstoffrückführdurchgang
(1606) und den dritten Kraftstoffrückführdurchgang (1607) gebildet wird;
der erste Ventilkörper (161) mit einem ersten Lufteinlassdurchgang (1608) versehen
ist, der mit dem ersten Hohlraum in Verbindung steht, und die Stopfbuchse (167) mit
einem zweiten Lufteinlassdurchgang (1629), der mit dem ersten Lufteinlassdurchgang
(1608) in Verbindung steht, und einem Lufteinlassanschluss (1630), der mit dem zweiten
Lufteinlassdurchgang (1629) in Verbindung steht, versehen ist; und
wenn eine Federkraft von der ersten Druckregulierungsfeder (169) kleiner oder gleich
einer Drucksumme eines Drucks eines in den ersten Hohlraum eingeleiteten Gases und
eines Drucks von in ein Kraftstoffeinlassende des ersten mittigen Lochs (1601) zugeführtem
Kraftstoff ist, eine konische Dichtung zwischen dem ersten Ventilkern (162) und dem
ersten mittigen Loch (1601) gebildet wird und die konische Dichtung an einer Position
unterhalb einer Position gebildet wird, an der der erste Kraftstoffrückführdurchgang
(1605) mit dem ersten mittigen Loch (1601) verbunden ist.
11. System nach Anspruch 10, wobei eine erste konische Dichtungsfläche (1611) und ein
Außengewinde (1612) an einer Oberseite eines Teils des ersten Ventilkerns (162) vorgesehen
sind, der in dem zweiten mittigen Loch (1602) angeordnet ist, wobei das Außengewinde
(1612) an einem oberen Ende der ersten konischen Dichtungsfläche (1611) angeordnet
ist; der untere Federsitz (164) durch das Außengewinde (1612) hindurchgeht und dann
auf die erste konische Dichtungsfläche (1611) aufgeschoben ist, und der untere Federsitz
(164) eine zweite konische Dichtungsfläche (1613) aufweist, die eine konische Dichtung
mit der ersten konischen Dichtungsfläche (1611) bildet; der untere Federsitz (164)
durch eine Mutter (1614) gepresst wird, die auf einen Umfang des Außengewindes (1612)
aufgeschoben ist; und die erste Druckregulierungsfeder (169) auf die Mutter (1614)
aufgeschoben und an dem unteren Federsitz (164) befestigt ist.
12. System nach Anspruch 10 oder 11, wobei der Kraftstoffrückführanschluss (168) fest
in das Gewindeloch (1603) eingeschraubt ist; eine obere Endfläche der Stopfbuchse
(167) mit einer ersten ebenen Dichtungsfläche (1615) an einer Öffnung des Gewindelochs
(1603) versehen ist; und der Kraftstoffrückführanschluss (168) mit einer zweiten ebenen
Dichtungsfläche (1616) versehen ist, die mit der ersten ebenen Dichtungsfläche (1615)
eine planare Dichtung bildet; und
ein dritter Hohlraum zwischen einer unteren Endfläche des Kraftstoffrückführanschlusses
(168) und einem Boden des Gewindelochs (1603) ausgebildet ist, wobei der dritte Hohlraum
mit dem zweiten Kraftstoffrückführdurchgang (1606) bzw. dem dritten Kraftstoffrückführdurchgang
(1607) in Verbindung steht und eine maximale Durchflussfläche des dritten Hohlraums
größer als eine maximale Durchflussfläche des zweiten Kraftstoffrückführdurchgangs
(1606) ist.
13. System nach einem der Ansprüche 10 bis 12, wobei, wenn sich der erste Ventilkern (162)
nach oben in eine obere Totpunktposition in dem ersten Ventilkörper (161) bewegt,
ein Abstand H2 zwischen unteren Endflächen des ersten Ventilkörpers (161) und des
ersten Ventilkerns (162) kleiner ist als ein Abstand H1 zwischen einer unteren Endfläche
des unteren Federsitzes (164) und dem Boden des zweiten mittigen Lochs (1602);
der untere Federsitz (164) ein drittes mittiges Loch (1617), das derart konfiguriert
ist, dass es eine Position der ersten Druckregulierungsfeder begrenzt, und ein viertes
mittiges Loch (1618), das derart konfiguriert ist, dass es mit dem ersten Ventilkern
(162) zusammenpasst, aufweist, wobei das vierte mittige Loch (1618) einen Durchmesser
aufweist, der größer als ein Durchmesser des Außengewindes (1612) ist; und der untere
Federsitz (164) einen Außendurchmesser aufweist, der gleich einem Durchmesser des
zweiten mittigen Lochs (1602) ist.
14. System nach einem der Ansprüche 1 bis 13, wobei jede der Durchflussbegrenzungsventilkomponenten
(13) einen mit der Common-Rail-Leitung (12) verbundenen Ventilsitz (131), einen zweiten
Ventilkörper (132), einen zweiten Ventilkern (133) und eine zweite Druckregulierungsfeder
(135) aufweist, wobei
der Ventilsitz (131) ein erstes Kraftstoffeinlassloch (13101) aufweist, das mit der
Common-Rail-Leitung (12) in Verbindung steht;
der zweite Ventilkörper (132) ein zweites axiales Durchgangsloch (13209) aufweist,
das seine oberen und unteren Endflächen durchdringt, und der Ventilsitz (131) von
einer unteren Endfläche des zweiten Ventilkörpers (132) teilweise in das zweite axiale
Durchgangsloch (13209) eingepresst ist;
der zweite Ventilkern (133) in dem zweiten axialen Durchgangsloch (13209) montiert
ist und oberhalb des Ventilsitzes (131) angeordnet ist;
der zweite Ventilkern (133) ein axiales Sackloch (13302) aufweist, das mit dem ersten
Kraftstoffeinlassloch (13101) in Verbindung steht, und ein Hohlraum zwischen einem
oberen Ende des zweiten Ventilkerns (133) und dem zweiten axialen Durchgangsloch (13209)
ausgebildet ist;
der zweite Ventilkern (133) darin mit einer quer verlaufenden Strömungsbegrenzungsblende
(13304) versehen ist, die das axiale Sackloch (13302) mit dem Hohlraum verbindet;
die zweite Druckregulierungsfeder (135) auf den zweiten Ventilkern (133) aufgeschoben
ist und in dem Hohlraum hinsichtlich seiner Position eingeschränkt wird;
ein Kopf des oberen Endes des zweiten Ventilkerns (133) eine dritte konische Dichtungsfläche
(13305) und eine vierte konische Dichtungsfläche (13306) aufweist, die miteinander
verbunden sind; und
eine erste Dichtungssitzfläche (13206), die in der Lage ist, eine konische Dichtung
mit der dritten konischen Dichtungsfläche (13305) zu bilden, an einer Wand des zweiten
axialen Durchgangslochs (13209) ausgebildet ist, und ein Spalt zwischen der ersten
Dichtungssitzfläche (13206) und der vierten konischen Dichtungsfläche (13306) ausgebildet
werden kann.
15. System nach einem der Ansprüche 1 bis 14, wobei die Druckbegrenzungsventilkomponente
(18) einen dritten Ventilkörper (181), einen dritten Ventilkern (182), eine dritte
Druckregulierungsfeder (185) und einen Kraftstoffleitungsanschluss (186) aufweist,
wobei
der dritte Ventilkörper (181) darin mit einem Loch erster Stufe (18101), einem Loch
zweiter Stufe (18102), einem Loch dritter Stufe (18104) und einem Loch vierter Stufe
(18105) versehen ist, die nacheinander von unten nach oben in Verbindung stehen;
der dritte Ventilkern (182) einen Kopf aufweist, der gleitend von dem Loch (18105)
vierter Stufe durch das Loch (18104) dritter Stufe eingeführt wird und dann teilweise
innerhalb des Lochs (18102) zweiter Stufe angeordnet ist, und eine konische Dichtung
zwischen dem dritten Ventilkern (182) und dem Loch (18102) zweiter Stufe gebildet
werden kann;
zwischen dem dritten Ventilkern (182) und dem Loch (18104) dritter Stufe ein erster
Spalt ausgebildet ist, der den Durchtritt von Kraftstoff ermöglicht, und zwischen
dem dritten Ventilkern (182) und dem Loch (18105) vierter Stufe ein zweiter Spalt
ausgebildet ist, der den Durchtritt von Kraftstoff ermöglicht; und
der Kraftstoffleitungsanschluss (186) an einem oberen Ende des dritten Ventilkörpers
(181) befestigt ist, der Kraftstoffleitungsanschluss (186) darin mit einem ersten
Senkloch (18601), einem zweiten Senkloch (18602) und einem Kraftstoffauslassloch (18603)
versehen ist, die nacheinander von unten nach oben miteinander in Verbindung stehen,
und die dritte Druckregulierungsfeder (185) zwischen dem dritten Ventilkern (182)
und dem zweiten Senkloch (18602) hinsichtlich ihrer Position eingeschränkt wird.
1. Système de rail commun haute pression pour un moteur à faible vitesse avec plusieurs
fonctions de protection de sécurité, comprenant :
un bloc de commande électronique ECU ;
une pompe carburant haute pression à commande électronique (1), pourvue d'une vanne
proportionnelle à commande électronique (2), dans lequel la vanne proportionnelle
à commande électronique (2) est configurée pour ajuster une proportion d'alimentation
en combustible lourd basse pression provenant d'un réservoir de carburant du moteur
à faible vitesse dans la pompe carburant haute pression à commande électronique (1)
selon une première instruction provenant de l'ECU ;
un premier bloc de distribution (6) relié à la pompe carburant haute pression à commande
électronique (1) via un premier tuyau de carburant haute pression (3) ;
un deuxième bloc de distribution (9) relié au premier bloc de distribution (6) via
un deuxième tuyau de carburant haute pression (8) ;
un tuyau à rail commun (12) relié au deuxième bloc de distribution (9) via un troisième
tuyau de carburant haute pression (10),
dans lequel un capteur (17) configuré pour détecter une pression de carburant du combustible
lourd haute pression dans le tuyau à rail commun (12) est monté sur le tuyau à rail
commun (12), et le capteur (17) est connecté à l'ECU ;
une pluralité d'éléments vannes de limitation de débit (13) sont montés sur le tuyau
à rail commun (12), et chacun des éléments vannes de limitation de débit (13) est
relié à un parmi des injecteurs de carburant à commande électronique (15) via un quatrième
tuyau de carburant haute pression (14) correspondant ; et chacun des éléments vannes
de limitation de débit (13) est configuré pour être fermé lorsqu'une différence de
pression de carburant entre le quatrième tuyau de carburant haute pression (14) correspondant
et le tuyau à rail commun (12) dépasse une différence de pression établie ;
un élément vanne de limitation de pression (18) est en outre monté sur le tuyau à
rail commun (12), et l'élément vanne de limitation de pression (18) est configuré
pour être ouvert lorsqu'une pression de carburant dans le tuyau à rail commun (12)
dépasse une première valeur de pression établie, de façon à ce que la pression de
carburant dans le tuyau à rail commun (12) soit stabilisée à une valeur de pression
cible ;
le premier bloc de distribution (6) est équipé d'un élément vanne d'arrêt (5) et d'un
élément vanne de sécurité (7), dans lequel l'élément vanne d'arrêt (5) est configuré
pour réaliser un procédé de décompression selon une deuxième instruction provenant
de l'ECU ; et l'élément vanne de sécurité (7) est configuré pour être ouvert lorsque
l'élément vanne d'arrêt (5) et l'élément vanne de limitation de pression (18) fonctionnent
mal et une pression de carburant dans le tuyau à rail commun (12) dépasse une deuxième
valeur de pression établie ; et
des éléments vannes de circulation (16) sont en outre montés sur le tuyau à rail commun
(12) et les injecteurs de carburant à commande électronique (15), et chacun des éléments
vannes de circulation (16) est configuré pour être ouvert lorsque le moteur à faible
vitesse est coupé, de façon à ce qu'une boucle de circulation soit formée entre un
réservoir de carburant du moteur à faible vitesse et le tuyau à rail commun (12),
et entre le réservoir de carburant du moteur à faible vitesse et chacun des injecteurs
de carburant à commande électronique (15).
2. Système selon la revendication 1, dans lequel la pompe carburant haute pression à
commande électronique (1) comprend :
un corps de pompe (101), pourvu d'un trou central le long d'une direction axiale du
corps de pompe (101) ;
un couvercle de pompe (102), monté sur une surface d'extrémité supérieure du corps
de pompe (101) ; et
un élément vanne d'entrée et de sortie de carburant (103), un ensemble plongeur et
cylindre (104), un ressort de plongeur (105), un élément siège de ressort inférieur
(106), et un élément piston de guidage (107), chacun étant assemblé dans le trou central
du corps de pompe (101),
dans lequel la vanne proportionnelle à commande électronique (2) est assemblée sur
un côté du corps de pompe (101) ;
l'élément vanne d'entrée et de sortie de carburant (103) comprend un élément vanne
d'entrée de carburant (1031) et un élément vanne de sortie de carburant (1032),
dans lequel l'élément vanne d'entrée de carburant (1031) comprend un siège de vanne
d'entrée de carburant (10311), une vanne d'entrée de carburant (10312), et un ressort
de vanne d'entrée de carburant (10313),
dans lequel la vanne d'entrée de carburant (10312) est montée dans un trou central
du siège de vanne d'entrée de carburant (10311) ; le ressort de vanne d'entrée de
carburant (10313) est limité en position entre la vanne d'entrée de carburant (10312)
et une paroi du trou central du siège de vanne d'entrée de carburant (10311) ; et
un joint d'étanchéité conique est formé entre la vanne d'entrée de carburant (10312)
et le siège de vanne d'entrée de carburant (10311) en étant pressé par le ressort
de vanne d'entrée de carburant (10313) ; et
l'élément vanne de sortie de carburant (1032) comprend un siège de vanne de sortie
de carburant (10321), une vanne de sortie de carburant (10322), un ressort de vanne
de sortie de carburant (10323), et un siège de ressort de vanne de sortie de carburant
(10324),
dans lequel le siège de ressort de vanne de sortie de carburant (10324) est monté
à une extrémité supérieure du siège de vanne de sortie de carburant (10321) ; la vanne
de sortie de carburant (10322) est montée dans un trou central du siège de vanne de
sortie de carburant (10321) ; le ressort de vanne de sortie de carburant (10323) est
limité en position entre la vanne de sortie de carburant (10322) et le siège de ressort
de vanne de sortie de carburant (10324) ; et un joint d'étanchéité conique est formé
entre la vanne de sortie de carburant (10322) et le siège de vanne de sortie de carburant
(10321) en étant pressé par le ressort de vanne de sortie de carburant (10323),
une chambre de sortie de carburant haute pression (1033) est formée entre le siège
de vanne de sortie de carburant (10321) et le siège de vanne d'entrée de carburant
(10311) ;
une chambre de carburant haute pression (1041) est formée dans l'ensemble plongeur
et cylindre (104), dans lequel la chambre de carburant haute pression (1041) communique
avec la chambre de sortie de carburant haute pression (1033) via un trou de carburant
dans le siège de vanne d'entrée de carburant (10311) ;
la vanne proportionnelle à commande électronique (2) communique avec le trou d'entrée
de carburant du siège de vanne d'entrée de carburant (10311) via un premier trou de
carburant dans le corps de pompe (101), et le trou d'entrée de carburant communique
avec ou est séparé de la chambre de carburant haute pression (1041) ; et
la vanne proportionnelle à commande électronique (2) est pourvue d'un passage de carburant
à circulation de refroidissement, et du carburant de refroidissement provenant d'un
passage de carburant de refroidissement du corps de pompe (101) est injecté dans le
passage de carburant à circulation de refroidissement et reflue ensuite dans le passage
de carburant de refroidissement du corps de pompe (101).
3. Système selon la revendication 2, dans lequel l'ensemble plongeur et cylindre (104)
comprend :
un cylindre de plongeur (1042), disposé à une extrémité inférieure du siège de vanne
d'entrée de carburant (10311) ; et
un plongeur (1043), inséré de manière glissante dans un trou central du cylindre de
plongeur (1042), dans lequel la chambre de carburant haute pression (1041) est formée
par le cylindre de plongeur (1042), le plongeur (1043) et le siège de vanne d'entrée
de carburant (10311) ensemble, dans lequel
une paroi intérieure du cylindre de plongeur (1042) est pourvue d'une première rainure
annulaire (10421) et d'une deuxième rainure annulaire (10422) ;
le corps de pompe (101) est pourvu d'un passage de sortie d'huile mixte et d'un passage
de délivrance d'huile de graissage (1012), dans lequel le passage de sortie d'huile
mixte communique avec la première rainure annulaire (10421) via un passage d'huile
mixte (10423) dans le cylindre de plongeur (1042), et le passage de délivrance d'huile
de graissage (1012) communique avec la deuxième rainure annulaire (10422) via un passage
d'huile de graissage (10424) dans le cylindre de plongeur (1042) ;
la première rainure annulaire (10421) est située au-dessus de la deuxième rainure
annulaire (10422) ; et l'élément siège de ressort inférieur (106) est disposé sous
l'ensemble plongeur et cylindre (104),
dans lequel l'élément siège de ressort inférieur (106) comprend :
un siège de ressort extérieur (1061), ayant une structure de type bossage dans l'ensemble
avec une portion centrale plus épaisse et une portion extérieure plus mince, dans
lequel le siège de ressort extérieur (1061) a une surface d'extrémité supérieure pourvue
d'un troisième contre-alésage (10611) avec une surface sphérique concave ;
une sphère supérieure (1062), ayant une partie inférieure montée dans le troisième
contre-alésage (10611), dans lequel une surface d'extrémité inférieure de la sphère
supérieure (1062) est pourvue d'une surface sphérique convexe s'appariant à la surface
sphérique concave ; et
un siège de ressort intérieur (1063), manchonné sur une partie supérieure de la sphère
supérieure (1062), dans lequel le siège de ressort intérieur (1063) a un premier trou
débouchant axial (10631) pénétrant dans ses surfaces d'extrémité supérieure et inférieure,
dans lequel une tête cylindrique inférieure (10431) du plongeur (1043) est limitée
en position dans le premier trou débouchant axial (10631), et la tête cylindrique
inférieure (10431) du plongeur (1043) a une surface d'extrémité inférieure venant
buter contre une surface d'extrémité supérieure de la sphère supérieure (1062).
4. Système selon la revendication 3, dans lequel
un trou sphérique (10612) est fourni au centre du troisième contre-alésage (10611),
une troisième rainure annulaire (10613) est fournie dans une surface d'extrémité inférieure
du siège de ressort extérieur (1061), et le trou sphérique (10612) communique avec
la troisième rainure annulaire (10613) via un conduit d'entrée d'huile de graissage
(10614) ;
une surface extérieure du siège de ressort extérieur (1061) est formée comme une surface
effilée, qui est pourvue d'un passage de sortie d'huile de graissage (10615), dans
lequel le passage de sortie d'huile de graissage (10615) communique avec la surface
d'extrémité inférieure du siège de ressort extérieur (1061) ; et le passage de sortie
d'huile de graissage (10615) est fourni obliquement ;
une rainure annulaire circonférentielle (10621) est agencée dans une direction circonférentielle
de la sphère supérieure (1062) ;
un axe de positionnement (1064) est monté dans la rainure annulaire circonférentielle
(10621) à travers un trou d'axe de positionnement (10616) du siège de ressort extérieur
(1061) ;
un espacement entre des surfaces supérieure et inférieure de la rainure annulaire
circonférentielle (10621) est plus grand qu'un diamètre cylindrique d'une partie de
l'axe de positionnement (1064) qui est située dans la rainure annulaire circonférentielle
(10621) ;
le premier trou débouchant axial (10631) fourni à l'intérieur du siège de ressort
intérieur (1063) comprend :
un septième trou (10632), un huitième trou (10633), et un neuvième trou (10634) ayant
des diamètres augmentant progressivement du haut vers le bas, dans lequel
un premier trou de guidage (10635) avec un diamètre augmentant progressivement est
fourni entre le huitième trou (10633) et le neuvième trou (10634) ;
un deuxième trou de guidage (10636) avec un diamètre augmentant progressivement est
fourni sur un côté du neuvième trou (10634) faisant face à la sphère supérieure (1062),
dans lequel
les parois du premier trou de guidage (10635) et du deuxième trou de guidage (10636)
sont formées comme des surfaces de guidage effilées (10637) ;
une partie supérieure de la sphère supérieure (1062) est positionnée partiellement
dans le neuvième trou (10634) à travers le deuxième trou de guidage (10636) ;
un interstice plus grand que ou égal à 1 mm est formé entre la sphère supérieure (1062)
et le neuvième trou (10634) ; et
un interstice plus grand que ou égal à 1 mm est formé entre le troisième contre-alésage
(10611) et la sphère supérieure (1062).
5. Système selon l'une quelconque des revendications 2 à 4, dans lequel la pompe carburant
haute pression à commande électronique (1) comprend en outre : un siège de ressort
supérieur (109), manchonné sur le cylindre de plongeur (1042) et situé à une extrémité
supérieure du siège de ressort intérieur (1063) ; le ressort de plongeur (105) comprend
: un premier ressort de plongeur (1051), monté de manière compressive entre le siège
de ressort supérieur (109) et le siège de ressort extérieur (1061) ; et un deuxième
ressort de plongeur (1052), monté de manière compressive entre le siège de ressort
supérieur (109) et le siège de ressort intérieur (1063) :
de préférence, les diamètres de la surface sphérique concave dans le siège de ressort
extérieur (1061) et de la surface sphérique convexe de la sphère supérieure (1062)
sont chacun 20 à 100 fois un diamètre du plongeur (1043).
6. Système selon l'une quelconque des revendications 2 à 5, dans lequel l'élément à piston
de guidage (107) comprend :
un piston de guidage (1071), pourvu d'un premier trou de montage (10711) à une position
centrale de sa surface d'extrémité supérieure et pourvu d'un deuxième trou de montage
(10712) au niveau de sa surface d'extrémité inférieure, dans lequel le premier trou
de montage (10711) et le deuxième trou de montage (10712) communiquent l'un avec l'autre
via un trou de communication (10713), et l'élément siège de ressort inférieur (106)
est monté dans le premier trou de montage (10711) ;
un élément à galet (1072), comprenant un galet (10728) monté dans le deuxième trou
de montage (10712), un coussinet de galet (10722) ajusté avec serrage dans le galet
(10728), et des paliers de butée (10723) ajustés avec serrage aux deux extrémités
du galet (10728) dans une direction axiale, dans lequel une rainure annulaire (10724)
est fournie dans la direction axiale du galet (10728), et une liaison de transition
en forme d'arc est formée entre un fond de la rainure annulaire (10724) et une surface
d'extrémité du galet (10728) dans la direction axiale ; et
un axe de galet (1073), logé dans le coussinet de galet (10722) avec un jeu entre
ceux-ci, dans lequel
un bossage (10714) est disposé en saillie à partir d'une paroi du deuxième trou de
montage (10712), et le bossage (10714) est en contact avec le palier de butée (10723)
; et
une pluralité de premières rainures d'huile radiales (10715) sont agencées uniformément
dans le bossage (10714) le long de sa direction radiale, et les premières rainures
d'huile radiales (10715) sont fournies par rapport au palier de butée (10723).
7. Système selon la revendication 6, dans lequel
une surface extérieure de l'axe de galet (1073) est fournie comme une surface cylindrique,
qui est pourvue de premières rainures en forme d'échancrures (10731) et de deuxièmes
rainures en forme d'échancrures (10732) à deux positions, respectivement, dans lequel
les premières rainures en forme d'échancrures (10731) et les deuxièmes rainures en
forme d'échancrures (10732) sont fournies dans les positions intermédiaires de l'axe
de galet (1073) ;
une rainure cunéiforme à petit angle avec un angle entre 5° et 20° est formée entre
chacune des premières rainures en forme d'échancrures (10731) situées sur une couche
extérieure et une surface extérieure du coussinet de galet (10722), et un deuxième
trou d'huile (10733) est fourni dans chacune des deuxièmes rainures en forme d'échancrures
(10732) situées dans une couche intérieure,
dans lequel deux deuxièmes trous d'huile (10733) aux deux positions communiquent l'un
avec l'autre via un passage de sortie d'huile de graissage, et les deux deuxièmes
trous d'huile (10733) sont fournis à un angle de 70° à 120° ;
une surface extérieure du piston de guidage (1071) est fournie comme une surface cylindrique,
qui est pourvue d'une pluralité de rainures d'huile circonférentielles partielles
(10729) et de rainures d'huile circonférentielles (10725), d'une première rainure
d'huile axiale (10716) et d'une rainure verticale (10717), dans lequel la rainure
verticale (10717) est fournie dans chacune des rainures d'huile circonférentielles
(10725), et la rainure verticale (10717) communique avec les rainures d'huile circonférentielles
partielles (10729) via la première rainure d'huile axiale (10716) ;
la surface cylindrique est en outre pourvue d'un trou incliné (10718) ayant deux extrémités
communiquant avec une des rainures d'huile circonférentielles (10725) et une paroi
intérieure du deuxième trou de montage (10712), respectivement ;
la surface cylindrique est en outre pourvue d'une deuxième rainure d'huile axiale
(10719) communiquant avec une des rainures d'huile circonférentielles (10725) ;
la surface cylindrique est en outre pourvue d'un premier trou droit (10720) et d'un
deuxième trou droit (10721) reliés l'un à l'autre, le premier trou droit (10720) communique
avec la première rainure d'huile axiale (10716), et le deuxième trou droit (10721)
communique avec le premier trou de montage (10711) ; et
un passage d'entrée d'huile de graissage (10735) est fourni dans la surface cylindrique
extérieure de l'axe de galet (1073), dans lequel le passage d'entrée d'huile de graissage
(10735) est fourni par rapport au trou incliné (10718), et le passage d'entrée d'huile
de graissage (10735) communique avec le passage de sortie d'huile de graissage.
8. Système selon la revendication 7, dans lequel la surface cylindrique extérieure de
l'axe de galet (1073) est pourvue d'un revêtement en carbone sous forme de diamant
amorphe DLC ; le coussinet de galet (10722) est composé d'un alliage de cuivre ; le
palier de butée (10723) est composé d'un alliage de cuivre ; un graissage sous pression
et un graissage à pression dynamique sont utilisés entre l'axe de galet (1073) et
le coussinet de galet (10722) ; et un graissage sous pression et un graissage à pression
dynamique sont utilisés entre le palier de butée (10723) et le bossage (10714).
9. Système selon l'une quelconque des revendications 1 à 8, dans lequel
le tuyau à rail commun (12) a un conduit d'entrée de carburant (1201) et un conduit
de retour de carburant (1202) pénétrant dans les deux extrémités de celui-ci ;
un capuchon d'extrémité d'entrée de carburant (121) est fixé à une extrémité du tuyau
à rail commun (12), dans lequel le capuchon d'extrémité d'entrée de carburant (121)
est pourvu d'un port d'entrée de carburant communiquant avec le conduit d'entrée de
carburant (1201) ;
un couvercle d'extrémité (122) est fixé à l'autre extrémité du tuyau à rail commun
(12), dans lequel le couvercle d'extrémité (122) est pourvu d'un port de sortie de
carburant communiquant avec le conduit d'entrée de carburant (1201), et l'élément
vanne de circulation (16) monté sur le tuyau à rail commun (12) est fixé au couvercle
d'extrémité (122) ;
l'élément vanne de limitation de pression (18) et la pluralité d'éléments vannes de
limitation de débit (13) communiquent avec le conduit d'entrée de carburant (1201),
respectivement, et l'élément vanne de limitation de pression (18) et la pluralité
d'éléments vannes de limitation de débit (13) communiquent avec le conduit de retour
de carburant (1202), respectivement.
10. Système selon la revendication 9, dans lequel l'élément vanne de circulation (16)
monté sur le tuyau à rail commun (12) comprend :
un premier corps de vanne (161) fixé au couvercle d'extrémité (122), qui a une surface
d'extrémité inférieure pourvue d'un premier trou central (1601) communiquant avec
le port de sortie de carburant, et une surface d'extrémité supérieure pourvue d'un
deuxième trou central (1602), dans lequel le premier trou central (1601) communique
avec le deuxième trou central (1602) ;
un premier noyau de vanne (162), qui est inséré de manière glissante dans le premier
trou central (1601) à partir de la surface d'extrémité inférieure du premier corps
de vanne (161) et situé partiellement dans le deuxième trou central (1602) ;
un siège de ressort inférieur (164), qui est manchonné sur la partie du premier noyau
de vanne (162) qui est située dans le deuxième trou central (1602), et qui est relié
de manière fixe au premier noyau de vanne (162), dans lequel une première cavité est
formée entre le siège de ressort inférieur (164) et un fond du deuxième trou central
(1602) ;
un presse-étoupe (167), qui est fixé à la surface d'extrémité supérieure du premier
corps de vanne (161), dans lequel le presse-étoupe (167) a une surface d'extrémité
supérieure pourvue d'un trou fileté (1603) ;
un joint de retour de carburant (168), qui est fixé partiellement dans le trou fileté
(1603) ; et
un premier ressort de régulation de pression (169), qui est limité en position entre
le siège de ressort inférieur (164) et le presse-étoupe (167), dans lequel
le premier corps de vanne (161) est pourvu d'un premier passage de retour de carburant
(1605) communiquant avec le premier trou central (1601), le presse-étoupe (167) est
pourvu d'un deuxième passage de retour de carburant (1606) communiquant avec le premier
passage de retour de carburant (1605), le joint de retour de carburant (168) est pourvu
d'un troisième passage de retour de carburant (1607) communiquant avec le deuxième
passage de retour de carburant (1606), et un passage de circulation de carburant est
formé par le premier passage de retour de carburant (1605), le deuxième passage de
retour de carburant (1606) et le troisième passage de retour de carburant (1607) ;
le premier corps de vanne (161) est pourvu d'un premier passage d'entrée d'air (1608)
communiquant avec la première cavité, et le presse-étoupe (167) est pourvu d'un deuxième
passage d'entrée d'air (1629) communiquant avec le premier passage d'entrée d'air
(1608) et d'un port d'entrée d'air (1630) communiquant avec le deuxième passage d'entrée
d'air (1629) ; et
lorsqu'une force de ressort provenant du premier ressort de régulation de pression
(169) est inférieure ou égale à une somme de pressions d'une pression d'un gaz introduit
dans la première cavité et d'une pression de carburant alimentant une extrémité d'entrée
de carburant du premier trou central (1601), un joint d'étanchéité conique est formé
entre le premier noyau de vanne (162) et le premier trou central (1601), et le joint
d'étanchéité conique est formé à une position en dessous d'une position où le premier
passage de retour de carburant (1605) est relié au premier trou central (1601).
11. Système selon la revendication 10, dans lequel une première surface de joint d'étanchéité
conique (1611) et un filetage externe (1612) sont fournis à un sommet d'une partie
du premier noyau de vanne (162) qui est située dans le deuxième trou central (1602),
dans lequel le filetage externe (1612) est situé à une extrémité supérieure de la
première surface de joint d'étanchéité conique (1611) ; le siège de ressort inférieur
(164) passe à travers le filetage externe (1612) et est ensuite manchonné sur la première
surface de joint d'étanchéité conique (1611), et le siège de ressort inférieur (164)
a une deuxième surface de joint d'étanchéité conique (1613) qui forme un joint d'étanchéité
conique avec la première surface de joint d'étanchéité conique (1611) ; le siège de
ressort inférieur (164) est pressé par un écrou (1614) manchonné sur une périphérie
du filetage externe (1612) ; et le premier ressort de régulation de pression (169)
est manchonné sur l'écrou (1614) et fixé au siège de ressort inférieur (164).
12. Système selon la revendication 10 ou 11, dans lequel le joint de retour de carburant
(168) est vissé de manière fixe dans le trou fileté (1603) ; une surface d'extrémité
supérieure du presse-étoupe (167) est pourvue d'une première surface d'étanchéité
plate (1615) au niveau d'une ouverture du trou fileté (1603) ; et le joint de retour
de carburant (168) est pourvu d'une deuxième surface d'étanchéité plate (1616) qui
forme un joint d'étanchéité plan avec la première surface d'étanchéité plate (1615)
; et
une troisième cavité est formée entre une surface d'extrémité inférieure du joint
de retour de carburant (168) et un fond du trou fileté (1603), dans lequel la troisième
cavité communique avec le deuxième passage de retour de carburant (1606) et le troisième
passage de retour de carburant (1607), respectivement, et une section de débit maximal
de la troisième cavité est plus grande qu'une section de débit maximal du deuxième
passage de retour de carburant (1606).
13. Système selon l'une quelconque des revendications 10 à 12, dans lequel lorsque le
premier noyau de vanne (162) se déplace vers le haut jusqu'à une position de point
mort haut dans le premier corps de vanne (161), une distance H2 entre des surfaces
d'extrémité inférieure du premier corps de vanne (161) et du premier noyau de vanne
(162) est plus petite qu'une distance H1 entre une surface d'extrémité inférieure
du siège de ressort inférieur (164) et le fond du deuxième trou central (1602) ;
le siège de ressort inférieur (164) comprend un troisième trou central (1617) configuré
pour limiter une position du premier ressort de régulation de pression et un quatrième
trou central (1618) configuré pour s'apparier au premier noyau de vanne (162), dans
lequel le quatrième trou central (1618) a un diamètre plus grand qu'un diamètre du
filetage externe (1612) ; et le siège de ressort inférieur (164) a un diamètre extérieur
identique à un diamètre du deuxième trou central (1602).
14. Système selon l'une quelconque des revendications 1 à 13, dans lequel chacun des éléments
vannes de limitation de débit (13) comprend un siège de vanne (131) relié au tuyau
à rail commun (12), un deuxième corps de vanne (132), un deuxième noyau de vanne (133),
et un deuxième ressort de régulation de pression (135), dans lequel
le siège de vanne (131) a un premier trou d'entrée de carburant (13101) communiquant
avec le tuyau à rail commun (12) ;
le deuxième corps de vanne (132) a un deuxième trou débouchant axial (13209) pénétrant
dans ses surfaces d'extrémité supérieure et inférieure, et le siège de vanne (131)
est partiellement ajusté par pression dans le deuxième trou débouchant axial (13209)
à partir d'une surface d'extrémité inférieure du deuxième corps de vanne (132) ;
le deuxième noyau de vanne (133) est monté dans le deuxième trou débouchant axial
(13209) et disposé au-dessus du siège de vanne (131) ;
le deuxième noyau de vanne (133) a un trou borgne axial (13302) communiquant avec
le premier trou d'entrée de carburant (13101), et une cavité est formée entre une
extrémité supérieure du deuxième noyau de vanne (133) et le deuxième trou débouchant
axial (13209) ;
le deuxième noyau de vanne (133) est pourvu dans celui-ci d'un orifice de réduction
de débit transversal (13304) faisant communiquer le trou borgne axial (13302) avec
la cavité ;
le deuxième ressort de régulation de pression (135) est manchonné sur le deuxième
noyau de vanne (133) et est limité en position dans la cavité :
une tête de l'extrémité supérieure du deuxième noyau de vanne (133) a une troisième
surface de joint d'étanchéité conique (13305) et une quatrième surface de joint d'étanchéité
conique (13306) reliées l'une à l'autre ; et
une première surface de siège d'étanchéité (13206) qui peut former un joint d'étanchéité
conique avec la troisième surface de joint d'étanchéité conique (13305) est formée
au niveau d'une paroi du deuxième trou débouchant axial (13209), et un interstice
peut être formé entre la première surface de siège d'étanchéité (13206) et la quatrième
surface de joint d'étanchéité conique (13306).
15. Système selon l'une quelconque des revendications 1 à 14, dans lequel l'élément vanne
de limitation de pression (18) comprend un troisième corps de vanne (181), un troisième
noyau de vanne (182), un troisième ressort de régulation de pression (185), et un
joint de tuyau de carburant (186), dans lequel
le troisième corps de vanne (181) est pourvu dans celui-ci d'un trou de premier étage
(18101), d'un trou de deuxième étage (18102), d'un trou de troisième étage (18104),
et d'un trou de quatrième étage (18105) communiquant de manière séquentielle du bas
vers le haut ;
le troisième noyau de vanne (182) a une tête, qui est insérée de manière glissante
à partir du trou de quatrième étage (18105), à travers le trou de troisième étage
(18104) et ensuite située partiellement à l'intérieur du trou de deuxième étage (18102),
et un joint d'étanchéité conique peut être formé entre le troisième noyau de vanne
(182) et le trou de deuxième étage (18102) ;
un premier interstice permettant à un carburant de passer à travers celui-ci est formé
entre le troisième noyau de vanne (182) et le trou de troisième étage (18104), et
un deuxième interstice permettant au carburant de passer à travers celui-ci est formé
entre le troisième noyau de vanne (182) et le trou de quatrième étage (18105) ; et
le joint de tuyau de carburant (186) est fixé à une extrémité supérieure du troisième
corps de vanne (181), le joint de tuyau de carburant (186) est pourvu dans celui-ci
d'un premier contre-alésage (18601), d'un deuxième contre-alésage (18602), et d'un
trou de sortie de carburant (18603) communiquant de manière séquentielle du bas vers
le haut, et le troisième ressort de régulation de pression (185) est limité en position
entre le troisième noyau de vanne (182) et le deuxième contre-alésage (18602).