(19)
(11) EP 3 695 569 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
27.03.2024 Bulletin 2024/13

(21) Application number: 18799910.7

(22) Date of filing: 10.10.2018
(51) International Patent Classification (IPC): 
H04L 12/46(2006.01)
H04L 45/50(2022.01)
H04W 40/24(2009.01)
H04L 45/00(2022.01)
(52) Cooperative Patent Classification (CPC):
H04L 12/462; H04L 12/4633; H04W 40/24; H04L 45/66; H04L 45/50
(86) International application number:
PCT/US2018/055175
(87) International publication number:
WO 2019/075033 (18.04.2019 Gazette 2019/16)

(54)

A SYSTEM AND METHOD FOR PROVIDING A LAYER 2 FAST RE-SWITCH FOR A WIRELESS CONTROLLER

SYSTEM UND VERFAHREN ZUR BEREITSTELLUNG VON SCHNELLER SCHICHT-2-UMSCHALTUNG FÜR EINE DRAHTLOSE STEUERUNG

SYSTÈME ET PROCÉDÉ DE FOURNITURE DE RECOMMUTATION RAPIDE DE COUCHE 2 POUR UN CONTRÔLEUR SANS FIL


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 10.10.2017 US 201715728559

(43) Date of publication of application:
19.08.2020 Bulletin 2020/34

(73) Proprietor: Cisco Technology, Inc.
San Jose, CA 95134 (US)

(72) Inventors:
  • SHEN, Naiming
    San Jose CA 95134 (US)
  • ZHUANG, Jun
    San Jose CA 95134 (US)
  • PONNURU, Laxmikantha, Reddy
    San Jose CA 95134 (US)
  • PENDYALA, Veeranjaneyulu
    San Jose CA 95134 (US)

(74) Representative: Mathys & Squire 
The Shard 32 London Bridge Street
London SE1 9SG
London SE1 9SG (GB)


(56) References cited: : 
US-A1- 2007 206 537
US-A1- 2014 269 535
US-A1- 2011 274 036
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present disclosure relates to pack flow through a wireless controller and more specifically to a layer 2 fast re-switching approach which provides a process of transitioning from an active wireless controller to a standby wireless controller when the active wireless controller fails.

    BACKGROUND



    [0002] FIG. 1 illustrates the general wireless packet flow infrastructure 100 between wireless devices 102, 104 and the Internet 116. Clients 102,104 connect to an Access Point (AP) 106 wherein data will be transmitted through an IP CAPWAP (Wireless Access Points protocol) tunnel 108 to a wireless controller (WLC) 110. Packets will then be natively layer 2 (L2) forwarded 112, 113 to/from Internet gateway (GW) router 114 for connecting to the Internet 116.

    [0003] A WLC 110 can handle hundreds of thousands of wireless clients 102/104. The WLC 110 needs to be highly redundant with high availability. When the active WLC 110 goes down, a standby WLC 118 takes over. The wireless clients 102/104 and the AP 106 states are synced over from the active WLC 110 to the standby WLC 118. The AP 106 also needs to switch to the new active WLC 118 with a new CAPWAP tunnel end-point 120. After the WLC fail-over, the clients 102/104 to/from the WLC portion of the traffic is handled in a fast convergence fashion such that within one second, for example, the traffic from the clients 102/104 is communicated from the AP 106 through the new tunnel 120 to the new WLC 118. The AP 106 can represent multiple devices and even hundreds to thousands of devices.

    [0004] However, there are additional challenged in the failover process. The portion of the network between the WLC 110 and the GW 114 is a L2 switch or switch domain 112, 113. For traffic from the GW 114 to the WLC 110, the MAC (Media Access Control) learning had the path from the GW 114 to the former active WLC device 110. The L2 switch network 112 will not know that the new active WLC 118 has taken over all the client MAC addresses. The challenge in the fail-over scenario is that it takes real traffic for each of the MAC addresses of the clients 102/104 to be relearned in order for GW 114 to reach the new active WLC device 118.

    [0005] One way to handle relearning all of the MAC addresses after a fail-over to the new active WLC 118. The new active WLC 118 will send out gratuitous ARP (Address Resolution Protocol) signals for each of the clients 102/104 to advertise that the new WLC 118 now owns those MAC addresses. But to handle hundreds of thousands of wireless client MAC devices, at the moment right after switchover and the device is very busy, would take a while for all MAC addresses to be finally relearned in the L2 domain 113.

    [0006] Thus, even if the system implements an efficient and speedy synchronization of the clients' information from the active WLC 110 to the standby WLC 118, if the system does not implement a scalable solution to deal with the re-convergence of hundreds of thousands of wireless clients on the L2 domain, there remains a need within the art for a faster convergence approach.

    [0007] US 2014/0269535 A1 relates to a method which includes identifying an access point joining a wireless controller in communication with a switch, establishing a control tunnel between the access point and the wireless controller, transmitting an address of the switch from the wireless controller to the access point, and requesting the switch to setup a data tunnel with the access point.

    [0008] US 2011/274036 A1 discloses techniques to support roaming of wireless devices in a network such that the wireless devices can keep their Internet Protocol (IP) addresses as they roam within and across mobility sub-domains. When a wireless device roams from one access switch to another access switch, a tunnelling endpoint apparatus in the wireless device's home mobility sub-domain is configured to serve as the point of presence for the roamed wireless device. Traffic for the roamed wireless device is tunneled from the access switch where the wireless device has roamed (where it is currently attached) to the tunneling endpoint apparatus. When the wireless device roams across mobility sub-domains, then traffic is tunneled from the access switch where the wireless device is currently attached to the tunneling endpoint apparatus in that mobility sub-domain (called a "foreign" mobility sub-domain) to the tunneling endpoint apparatus in the wireless device's home mobility sub-domain.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0009] In order to describe the manner in which the above-recited and other advantages and features of the disclosure can be obtained, a more particular description of the principles briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings.
    Understanding that these drawings depict only exemplary embodiments of the disclosure and are not therefore to be considered to be limiting of its scope, the principles herein are described and explained with additional specificity and detail through the use of the accompanying drawings in which:

    FIG. 1 illustrates an example wireless packet flow through various devices between a wireless client and the Internet;

    FIG. 2 illustrates an example system configuration;

    FIG. 3A illustrates a first aspect of the fast re-switch approach;

    FIG. 3B illustrates another aspect of the fast re-switch approach;

    FIG. 3C illustrates yet another aspect of the fast re-switch approach;

    FIG. 4 illustrates a method embodiment;

    FIG. 5 illustrates a method embodiment from a switch standpoint; and

    FIG. 6 illustrates a method embodiment from a wireless controller standpoint.


    DESCRIPTION OF EXAMPLE EMBODIMENTS



    [0010] The invention is set out in the independent claims and preferred features are set out in the dependent claims.

    [0011] Various embodiments of the disclosure are discussed in detail below. While specific implementations are discussed, it should be understood that this is done for illustration purposes only.

    Overview



    [0012] Additional features and advantages of the disclosure will be set forth in the description which follows, and in part will be obvious from the description, or can be learned by practice of the herein disclosed principles. The features and advantages of the disclosure can be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features of the disclosure will become more fully apparent from the following description and appended claims, or can be learned by the practice of the principles set forth herein.

    [0013] Disclosed is a method that enables a transition from a primary active wireless controller to a standby wireless controller. The method includes establishing a fast re-switch tunnel between a L2 switch and the standby wireless controller. Once the tunnel is established, the system can switch from the active wireless controller to the standby wireless controller and data can be routed from the Internet through the layer to switching network to the standby wireless controller through the fast re-switch tunnel prior to updating MAC tables for wireless clients. The method from the standpoint of the L2 switch includes receiving, at the L2 switch, a first message to establish a fast re-switch tunnel between the L2 switch and a wireless controller and receiving, at the L2 switch, a second message to trigger use of the fast re-switch tunnel. The switch receives data and forwards the data to the standby wireless controller through the fast re-switch tunnel.

    [0014] The standby wireless controller, once it becomes active, can transmit a gratuitous address resolution protocol request to the wireless clients such that all of the MAC entries for wireless clients in a table can be updated. Once all the MAC entries are updated, the fast re-switch tunnel can be removed. Embodiments of the concepts disclosed herein can be directed to different nodes within the environment. For example, aspects of the disclosure can be addressed from the standpoint of an L2 switch in layer 2, which can include any switch and including the switch closest to the active wireless controller. The disclosure can be addressed from the standpoint of the active wireless controller or the standby wireless controller. Furthermore, the disclosure can be directed from the standpoint of a gateway node, an access point, a wireless client, or any other component which is involved in the management of the pathways associated with data flow through the layer 2 network.

    Detailed Description



    [0015] The present disclosure addresses the issues raised above. The disclosure provides a system, method and computer-readable storage device embodiments. First a general example system shall be disclosed in FIG. 2 which can provide some basic hardware components making up a server, node or other computer system.

    [0016] First a general example system shall be disclosed in FIG. 2, which can provide some basic hardware components making up a server, node or other computer system. FIG. 2 illustrates a computing system architecture 200 wherein the components of the system are in electrical communication with each other using a connector 205. Exemplary system 200 includes a processing unit (CPU or processor) 210 and a system connector 205 that couples various system components including the system memory 215, such as read only memory (ROM) 220 and random access memory (RAM) 225, to the processor 210. The system 200 can include a cache of high-speed memory connected directly with, in close proximity to, or integrated as part of the processor 210. The system 200 can copy data from the memory 215 and/or the storage device 230 to the cache 212 for quick access by the processor 210. In this way, the cache can provide a performance boost that avoids processor 210 delays while waiting for data. These and other modules/services can control or be configured to control the processor 210 to perform various actions. Other system memory 215 may be available for use as well. The memory 215 can include multiple different types of memory with different performance characteristics. The processor 210 can include any general purpose processor and a hardware module or software module/service, such as service 1 232, service 2 234, and service 3 236 stored in storage device 230, configured to control the processor 210 as well as a special-purpose processor where software instructions are incorporated into the actual processor design. The processor 210 may essentially be a completely self-contained computing system, containing multiple cores or processors, a bus (connector), memory controller, cache, etc. A multi-core processor may be symmetric or asymmetric.

    [0017] To enable user interaction with the computing device 200, an input device 245 can represent any number of input mechanisms, such as a microphone for speech, a touch-sensitive screen for gesture or graphical input, keyboard, mouse, motion input, speech and so forth. An output device 235 can also be one or more of a number of output mechanisms known to those of skill in the art. In some instances, multimodal systems can enable a user to provide multiple types of input to communicate with the computing device 200. The communications interface 240 can generally govern and manage the user input and system output. There is no restriction on operating on any particular hardware arrangement and therefore the basic features here may easily be substituted for improved hardware or firmware arrangements as they are developed.

    [0018] Storage device 230 is a non-volatile memory and can be a hard disk or other types of computer readable media which can store data that are accessible by a computer, such as magnetic cassettes, flash memory cards, solid state memory devices, digital versatile disks, cartridges, random access memories (RAMs) 225, read only memory (ROM) 220, and hybrids thereof.

    [0019] The storage device 230 can include software services 232, 234, 236 for controlling the processor 210. Other hardware or software modules/services are contemplated. The storage device 230 can be connected to the system connector 205. In one aspect, a hardware module that performs a particular function can include the software component stored in a computer-readable medium in connection with the necessary hardware components, such as the processor 210, connector 205, display 235, and so forth, to carry out the function.

    [0020] According to an aspect of this disclosure, the Active/Standby WLC interface 110 is with the Internet Gateway (GW) 114 in the layer 2 (L2) domain 112. This part is not an IP/IPv6 network. The GW 114 treats the WLC 110 as part of the switch domain. The virtual router redundancy protocol, which provides for automatic assignment of available Internet Protocol routers for participating hosts, does not apply in this case. The L2 domain switches 112 in this disclosure relate to the OSI L2 switch routing functionality. The basic idea is to use controller intelligence design routes through an Ethernet switched network that avoid the use of broadcast when the route to the destination is known. L2 is the data link layer that provides node-to-node data transfer. It is a link between two directly connected nodes, which, in this case, is the Gateway 114 and the WLC 110 or WLC 118. The data link L2, in one application, is divided into two sub layers, including the MAC layer which is responsible for controlling how devices in a network gain access to a medium and permission to transmit data and a logical link control layer, which is responsible for identifying and encapsulating network layer protocols, and controls error checking and frame synchronization.

    [0021] FIGs. 3A, 3B and 3C illustrate an example network architecture 300 according to an aspect of this disclosure. FIG. 4 illustrates a method embodiment. These figures will be discussed together with the following example.

    [0022] In FIG. 3A, the traffic 304 from the Internet to the wireless clients 102/104 stops at the L2 switch 'S 1' 302 after a failure of the WLC 110. If this traffic can be re-switched towards the new active WLC 118, then the blackholing before the re-convergence of the L2 network can be minimized.

    [0023] As shown in FIG. 3B, before a switch-over from an active WLC 110 the new WLC 118, the active WLC 110 sends a signal/message to a switch 'S 1' 302 (402). The switch 302 can be directly connected to the WLC 110, or may be any other switch in layer 2 that can be configured with this functionality. The path 304 prior to switchover as is shown in FIG. 3A from the Internet 116, through the GW 114, through L2 Switch S3 310, through L2 Switch S1 302 to the WLC 110. Switch S1 has a MAC table with all of the entries for all the clients 102/104 of the APs 106. The message instructs the switch S1 302 to setup a backup path to MAC address 'M2' (the MAC address of the new WLC 118) for all the traffic that comes to the WLC 110. The MAC address 'M2' is the MAC address of the standby WLC interface 118 connecting to the L2 switch domain 112. The active WLC 110 can learn the M2 MAC address for the standby the WLC 118 from the standby the WLC 118 since the active WLC 110 and the standby the WLC 118 synchronize the wireless client 102/104 and AP 106 states. The active WLC 110 also instructs the standby WLC 118 that the fast re-switch point of local repair (PLR) is 'S1' 302 (with MAC address 'M3', for example) (404).

    [0024] The signal or message can be a L2 packet, for example use the CMP (Cisco MetaData Protocol) in the similar way as a security group tag (SGT) tag is defined. The switch 'S1' 302 is the only L2 device that needs to support the functionality disclosed herein. When 'S1' 302 receives the signal/message from the WLC 110, the switch S1 302 sets up the forwarding chain such that the normal traffic for all the WLC 110 related MAC addresses will go to the port towards the current active WLC 110, and the standby forwarding will have a MAC over MAC tunnel to reach the destination MAC of 'M2' (at the new WLC 118) for the fast re-switch later. In FIG. 3B, the data on pathway 322 from the Internet 116, through the GW 114, and L2 switch S3 310 flows to L2 Switch S1 and then is tunneled 326 (as triggered by the steps outline in the next paragraph) through L2 Switch S3 and L2 Switch S2 to the new WLC 118. This process basically involves pre-setting up a tunnel to the M2 address such that if the link goes down to WLC 110, the L2 Switch S1 302 can send the traffic that used to be sent to WLC 110 over to WLC 118 at MAC address M2. Any communications, handshakes, confirmations, and so forth can be established during this stage to acknowledge that WLC 118 is willing to accept traffic originally intended for WLC 110.

    [0025] Next the process includes switching over from the WLC 110 to the stand-by WLC 118 (406). The new active WLC 118 knows that it is now the master and will send a L2 signal/message 324 to switch 'S1' 302 (using MAC 'M3', for example) which instructs the switch S1 302 to trigger the fast re-switch setup such that traffic flows 326 to 'M2' now (408). The pre-setup was established above, and this step involves activating or triggering the fast re-switch setup which causes the traffic to utilize the new path to the WLC 118. There can be any amount of time before the pre-setup and the actual triggering. Furthermore, the timing of the instruction to pre-set up the tunnel and the triggering can be determined based on a number of factors. For example, WLC 110 may predict that within one hour, there is a likelihood that it will fail. WLC 110 can, based on the prediction of the timing of when a failure is likely, or based on any other factor, can transmit the signal to S1 302 to initiate the pre-set up. Other factors outside of the WLC 110 can be communicated to the WLC 110 such that it sends the instruction. The instruction can also come from another source and not the WLC 110. Another node in the network, and administrator, a network-based service, and so forth, could cause the instruction to be sent to S1 302 to initiate the preset up process.

    [0026] The 'S1' 302, based on the message from the new WLC 118, flips the forwarding active/standby path decision on the forwarding chain 326. The result of this operation is that all the traffic that was to be sent to the port for the previous WLC 110 is now encapsulated with another MAC tunnel 326 with destination address of MAC 'M2' 118. Since the new active WLC 118 sends a L2 signal 324 to S1' 302 for triggering, the MAC 'M2' is learned throughout the L2 domain from the new active WLC 118 to 'S1' 302.

    [0027] All the traffic from the Internet 116 to respective wireless clients 102/104, if the traffic reaches the switch 'S1', will be fast re-switched 326 to the new active WLC 118. It will be further sent to the AP 106 and clients 102/104 by the WLC 118 via path 328.

    [0028] In the meantime, the new active WLC 118 can send out gratuitous address resolution protocol (GARP) signals for all of its wireless clients 102/104 (410). This is shown in FIG. 3C. This process may take 10 minutes to complete, but it is needed to have traffic eventually go through the optimal path 342 in the L2 network. Note that after the GARP, that L2 Switch S1302 is bypassed in the path of traffic to the new WLC 118. After all the MAC addresses are processed with the GARP, the new active WLC 118 can send another signal/message to 'S1' (MAC 'M3' for example) to have it tear down the fast re-switch setup and to remove this state from the switch (412). This signal to tear down the tunnel that was created by S1 302 can also come from any other node in the network.

    [0029] The L2 fast re-switch approach works in a general L2 switch network and does not depend on the network topology. Even when the 'S1' and 'S2' switches represent a single combined switch, the mechanism works the same without change.

    [0030] A more secure and reliable mechanism can add a 'keepalive' message (once every 5 minutes for example) between the 'S1' Switch 302 and the standby WLC 118 after step (402) above. This is to make sure the standby WLC 118 will accept the tunneled-over traffic after switch-over, and also to make sure the path between them is not broken before the switch-over happens.

    [0031] Multicast traffic from the Internet 116 to the clients 102/104 will be handled the same way during the fast re-switch. Normally after switch-over to the new active WLC 118, multicast traffic needs to wait until the client sending out the periodical Internet group management protocol (IGMP) reports which is once a minute by default. With this L2 fast re-switching, the multicast packets received on 'S1' 302 will be MAC encapsulated to the new active WLC 118 to reach the wireless clients 102/104. The L2 fast re-switch can be applied to some use cases other than the WLC high availability. The mechanism can be standardized for multiple vendor support.

    [0032] The fast re-switching approach disclosed herein is the industry's first L2 fast re-switch for the application of wireless controller high availability. It uses a MAC over MAC tunnel to achieve the fast convergence in a scalable way after the WLC switchover in the L2 switch domain between the WLC 110/118 and Internet gateway router 114.

    [0033] The L2 solution is simple and effective, and can scale to a very large number of clients of a wireless controller with the same fast convergence time. Only one external device to the WLC 110 needs to support this mechanism and rest of the L2 domain does not need to understand this feature. In the example above, a directly connected L2 switch 302 is the supporting device, but other layer 2 switches or any other node could be used as well. It does not have the problem of long delay by only sending out gratuitous ARP for relearning of MAC addresses in L2 domain. The approach is not restricted to switches and topology as in using the Virtual Switching System (VSS) switches with dual active/standby links. The approach also does not need to run a border gateway protocol (BGP) Ethernet virtual private network/ locator identify separation protocol (EVPN/LISP) complex overlay protocol mechanism. Further, the approach does not need to flushout the MAC addresses as in overlay transport virtualization (OTV) case then to relearn every one of them.

    [0034] This disclosure realizes that the L2 switch domain cannot relearn a large of the MAC addresses very fast (e.g. < 1 sec) and the system needs to use the concept of IP network's fast reroute (FRR) which is independent of number of route entries. The concept disclosed herein is an L2 fast re-switch approach which takes certain steps to more efficiently manage a switch over from one WLC 110 to another WLC 118.

    [0035] Embodiments of the concepts disclosed herein can be claim from the standpoint of different nodes within the environment. For example, aspects of the disclosure can be addressed from the standpoint of an L2 switch in layer 2, which can include any switch and includes the L2 switch 302 as the closest switch to the active wireless controller 110. The disclosure can be addressed from the standpoint of the active wireless controller 110 or the standby wireless controller 118. Furthermore, the disclosure can be directed from the standpoint of a gateway node 114, an access point 106, a wireless client 102/104, or any other component which is involved in the management of the pathways associated with dataflow through the layer 2 network.

    [0036] FIG. 5 illustrates an aspect of this disclosure from the standpoint of an L2 switch. The L2 switch 302 is preferably, the L2 switch that is nearest physically or virtually to the active WLC 110, although it could also be any switch in the layer. The method includes receiving, at a L2 switch, a first message to establish a fast re-switch tunnel between the L2 switch and a wireless controller (502), receiving, at the L2 switch, a second message to trigger use of the fast re-switch tunnel (504), receiving data at the L2 switch (506) and forwarding the data to the wireless controller through the fast re-switch tunnel (508).

    [0037] The L2 switch can receive the first message from a first wireless controller or from any other node within the network. The wireless controller can be a second wireless controller that is different from the first wireless controller. In one example, the second wireless controller is the standby or backup wireless controller 118 and the first wireless controller can be the active wireless controller 110. The method further includes receiving, at the L2 switch, a MAC address of the wireless controller. This of course enables the set up of the fast re-switch tunnel 326, which can occur prior to a switchover to the standby WLC 118.

    [0038] The method can also include receiving, at the L2 switch 302, a third message instructing the L2 switch 302 to tear down the fast re-switch tunnel 326. This message can be received after a completion of a gratuitous address resolution protocol transmission process associated with the wireless controller. The GARP process involves the slower process of updating MAC tables for all of the wireless clients 102/104 being served by the standby WLC 118.

    [0039] FIG. 6 illustrates an embodiment from the standpoint of the standby wireless controller 118. The method includes receiving, at a stand-by wireless controller and from an active wireless controller, a MAC address of a L2 switch

    [0040] (602), transmitting, after the L2 switch establishes a fast re-switch tunnel between the L2 switch and the stand-by wireless controller, after controller fail-over and after the stand-by controller becomes the active controller (or one or more of these events), a message to the L2 switch to activate the fast re-switch tunnel (604) and receiving data initially intended for the active wireless controller at the stand-by wireless controller via the fast re-switch tunnel (606). The method can further include transmitting a gratuitous address resolution protocol notice to clients of the stand-by wireless controller. After a completion of a process of filling a MAC table with entries for the clients based on transmitting the gratuitous address resolution protocol notice, the method can include transmitting a second message to the L2 switch to tear down the fast re-switch tunnel. Another aspect can include receiving additional data at the stand-by wireless controller after the fast re-switch tunnel is torn down.

    [0041] In summary, disclosed is a method that includes receiving, at a layer 2 switch, a first message to establish a fast re-switch tunnel between the layer 2 switch and a standby wireless controller and receiving, at the layer 2 switch, a second message to trigger use of the fast re-switch tunnel. The switch receives data and forwards the data to the standby wireless controller through the fast re-switch tunnel. Once MAC tables are updated for the standby wireless controller, the fast re-switch tunnel can be torn down.

    [0042] In some embodiments the computer-readable storage devices, mediums, and/or memories can include a cable or wireless signal containing a bit stream and the like. However, when mentioned, non-transitory computer-readable storage media expressly exclude media such as energy, carrier signals, electromagnetic waves, and signals per se.

    [0043] Methods according to the above-described examples can be implemented using computer-executable instructions that are stored or otherwise available from computer readable media. Such instructions can include, for example, instructions and data which cause or otherwise configure a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Portions of computer resources used can be accessible over a network. The computer executable instructions may be, for example, binaries, intermediate format instructions such as assembly language, firmware, or source code. Examples of computer-readable media that may be used to store instructions, information used, and/or information created during methods according to described examples include magnetic or optical disks, flash memory, USB devices provided with non-volatile memory, networked storage devices, and so on.

    [0044] Devices implementing methods according to these disclosures can include hardware, firmware and/or software, and can take any of a variety of form factors. Typical examples of such form factors include laptops, smart phones, small form factor personal computers, personal digital assistants, rackmount devices, standalone devices, and so on. Functionality described herein also can be embodied in peripherals or add-in cards. Such functionality can also be implemented on a circuit board among different chips or different processes executing in a single device, by way of further example.

    [0045] The instructions, media for conveying such instructions, computing resources for executing them, and other structures for supporting such computing resources are means for providing the functions described in these disclosures.

    [0046] Although a variety of examples and other information was used to explain aspects within the scope of the appended claims, no limitation of the claims should be implied based on particular features or arrangements in such examples, as one of ordinary skill would be able to use these examples to derive a wide variety of implementations. Further and although some subject matter may have been described in language specific to examples of structural features and/or method steps, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to these described features or acts. For example, such functionality can be distributed differently or performed in components other than those identified herein. Rather, the described features and steps are disclosed as examples of components of systems and methods within the scope of the appended claims. Moreover, claim language reciting "at least one of" a set indicates that one member of the set or multiple members of the set satisfy the claim.

    [0047] Moreover, claim language reciting "at least one of" a set indicates that one member of the set or multiple members of the set satisfy the claim. For example,
    claim language reciting "at least one of A, B, and C" or "at least one of A, B, or C" means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.


    Claims

    1. A method for transitioning from an active wireless controller to a standby wireless controller, comprising:

    receiving (502), at a layer 2 switch (302), a first message to establish a fast re-switch tunnel for switching from a first wireless controller (110) to a second wireless controller (118), wherein the fast re-switch tunnel is between the layer 2 switch (302) and the second wireless controller (118), wherein the first wireless controller (110) is an active wireless controller, and wherein the second wireless controller (118) is a standby wireless controller;

    in response to receiving the first message, setting up, by the layer 2 switch (302), the fast re-switch tunnel as a standby backup path to the second wireless controller (118) for data intended for the first wireless controller (110);

    receiving (504), at the layer 2 switch (302), a second message (324) to trigger use of the fast re-switch tunnel;

    in response to receiving the second message, activating the fast re-switch tunnel;

    receiving (506) data at the layer 2 switch (302) intended for the first wireless controller (110); and

    forwarding (508) the data to the second wireless controller (118) through the fast re-switch tunnel instead of to the first wireless controller (110) to transition from the active wireless controller to the standby wireless controller.


     
    2. The method of claim 1, wherein the layer 2 switch (302) receives the first message from the first wireless controller (110).
     
    3. The method of any of claims 1 to 2, further comprising:
    receiving, at the layer 2 switch (302), a MAC address of the second wireless controller (118).
     
    4. The method of any of claims 1 to 3, further comprising:
    receiving, at the layer 2 switch (302), a third message instructing the layer 2 switch (302) to tear down the fast re-switch tunnel, optionally wherein receiving the third message occurs after a completion of a gratuitous address resolution protocol transmission process associated with the second wireless controller (118).
     
    5. A method comprising:

    receiving (602), at a stand-by wireless controller (118) and from an active wireless controller (110), a MAC address of a layer 2 switch (302);

    transmitting (604), after the layer 2 switch (302) establishes a fast re-switch tunnel between the layer 2 switch (302) and the stand-by wireless controller (118), a message (324) to the layer 2 switch (302) to activate the fast re-switch tunnel; and

    receiving (606) data initially intended for the active wireless controller (110) at the standby wireless controller (118) via the fast re-switch tunnel.


     
    6. The method of claim 5, further comprising:
    transmitting a gratuitous address resolution protocol notice to clients of the stand-by wireless controller (118), optionally wherein after a completion of a process of filling a MAC table with entries for the clients based on transmitting the gratuitous address resolution protocol notice, transmitting a second message to the layer 2 switch (302) to tear down the fast re-switch tunnel, optionally further comprising:
    receiving additional data at the stand-by wireless controller (118) after the fast re-switch tunnel is torn down.
     
    7. The method of claim 5 or 6, wherein the transmitting of the message (324) to the layer 2 switch (302) to activate the fast re-switch tunnel occurs after the active wireless controller (110) ceases working.
     
    8. The method of any of claims 5 to 7, further comprising:
    switching data flow from the active wireless controller (110) to the stand-by wireless controller (118).
     
    9. The method of any of claims 5 to 8, wherein the data is received from a gateway (114) to the layer 2 switch (302).
     
    10. The method of any of claims 5 to 9, further comprising:
    receiving additional data at the stand-by wireless controller (118) after MAC entries for clients (102, 104) of access points (106) associated with the stand-by wireless controller (118) are complete and after the fast re-switch tunnel is torn down.
     
    11. Apparatus comprising:

    means for receiving (502), at a layer 2 switch (302), a first message to establish a fast re-switch tunnel for switching from a first wireless controller (110) to a second wireless controller (118), wherein the fast re-switch tunnel is between the layer 2 switch (302) and the second wireless controller (118), wherein the first wireless controller (110) is an active wireless controller, and wherein the second wireless controller (118) is a standby wireless controller;

    means for setting up, by the layer 2 switch (302), in response to receiving the first message, the fast re-switch tunnel as a standby backup path to the second wireless controller (118) for data intended for the first wireless controller (110);

    means for receiving (504), at the layer 2 switch (302), a second message (324) to trigger use of the fast re-switch tunnel;

    means for activating, in response to receiving the second message, the fast re-switch tunnel;

    means for receiving (506) data at the layer 2 switch (302) intended for the first wireless controller (110); and

    means for forwarding (508) the data to the second wireless controller (118) through the fast re-switch tunnel instead of to the first wireless controller (110) to transition from the active wireless controller to the standby wireless controller.


     
    12. The apparatus of claim 11, further comprising means for implementing the method according to any of claims 2 to 4.
     
    13. Apparatus comprising:

    means for receiving (602), at a stand-by wireless controller (118) and from an active wireless controller (110), a MAC address of a layer 2 switch (302);

    means for transmitting (604), after the layer 2 switch (302) establishes a fast re-switch tunnel between the layer 2 switch (302) and the stand-by wireless controller (118), a message (324) to the layer 2 switch (302) to activate the fast re-switch tunnel; and

    means for receiving (606) data initially intended for the active wireless controller (110) at the stand-by wireless controller (118) via the fast re-switch tunnel.


     
    14. The apparatus of claim 13, further comprising means for implementing the method of any of claims 6 to 10.
     
    15. A computer program, computer program product or computer readable medium comprising instructions which, when executed by a computer, cause the computer to carry out the steps of the method of any of claims 1 to 4 or any of claims 5 to 10.
     


    Ansprüche

    1. Verfahren zum Wechseln von einem aktiven drahtlosen Controller zu einem drahtlosen Standby-Controller, das Folgendes umfasst:

    Empfangen (502), an einer Schicht-2-Schaltung (302), einer ersten Nachricht, um einen Schnell-Umschalt-Tunnel zum Umschalten von einem ersten drahtlosen Controller (110) zu einem zweiten drahtlosen Controller (118) aufzubauen, wobei der Schnell-Umschalt-Tunnel zwischen der Schicht-2-Schaltung (302) und dem zweiten drahtlosen Controller (118) liegt, wobei der erste drahtlose Controller (110) ein aktiver drahtloser Controller ist, und wobei der zweite drahtlose Controller (118) ein drahtloser Standby-Controller ist;

    als Reaktion auf den Empfang der ersten Nachricht, Einrichten, durch die Schicht-2-Schaltung (302), des Schnell-Umschalt-Tunnels als Standby-Backup-Pfad zu dem zweiten drahtlosen Controller (118) für Daten, die für den ersten drahtlosen Controller (110) bestimmt sind;

    Empfangen (504), an der Schicht-2-Schaltung (302), einer zweiten Nachricht (324), um die Verwendung des Schnell-Umschalt-Tunnels auszulösen;

    als Reaktion auf den Empfang der zweiten Nachricht, Aktivieren des Schnell-Umschalt-Tunnels;

    Empfangen (506) von Daten an der Schicht-2-Schaltung (302), die für den ersten drahtlosen Controller (110) bestimmt sind; und

    Weiterleiten (508) der Daten an den zweiten drahtlosen Controller (118) durch den Schnell-Umschalt-Tunnel anstelle des ersten drahtlosen Controllers (110), um von dem aktiven drahtlosen Controller zu dem drahtlosen Standby-Controller zu wechseln.


     
    2. Verfahren nach Anspruch 1, wobei die Schicht-2-Schaltung (302) die erste Nachricht von dem ersten drahtlosen Controller (110) empfängt.
     
    3. Verfahren nach einem der Ansprüche 1 bis 2, das ferner Folgendes umfasst:
    Empfangen, an der Schicht-2-Schaltung (302), einer MAC-Adresse des zweiten drahtlosen Controllers (118).
     
    4. Verfahren nach einem der Ansprüche 1 bis 3, das ferner Folgendes umfasst:
    Empfangen, an der Schicht-2-Schaltung (302), einer dritten Nachricht, die die Schicht-2-Schaltung (302) anweist, den Schnell-Umschalt-Tunnel abzubauen, optional wobei der Empfang der dritten Nachricht nach einem Abschluss eines dem zweiten drahtlosen Controller (118) zuzuordnenden unentgeltlichen Adressauflösungsprotokoll-Übertragungsprozesses erfolgt.
     
    5. Verfahren, das Folgendes umfasst:

    Empfangen (602), an einem drahtlosen Standby-Controller (118) und von einem aktiven drahtlosen Controller (110), einer MAC-Adresse einer Schicht-2-Schaltung (302);

    Übertragen (604), nachdem die Schicht-2-Schaltung (302) einen Schnell-Umschalt-Tunnel zwischen der Schicht-2-Schaltung (302) und dem drahtlosen Standby-Controller (118) aufgebaut hat, einer Nachricht (324) an die Schicht-2-Schaltung (302), um den Schnell-Umschalt-Tunnel zu aktivieren; und

    Empfangen (606) von Daten, die ursprünglich für den aktiven drahtlosen Controller (110) bestimmt waren, an dem drahtlosen Standby-Controller (118) über den Schnell-Umschalt-Tunnel.


     
    6. Verfahren nach Anspruch 5, das ferner Folgendes umfasst:

    Übertragen einer unentgeltlichen Adressauflösungsprotokoll-Nachricht an Clients des drahtlosen Standby-Controllers (118), optional wobei nach einem Abschluss eines Prozesses zum Füllen einer MAC-Tabelle mit Einträgen für die Clients basierend auf der Übertragung der unentgeltlichen Adressauflösungsprotokoll-Nachricht Folgendes ausgeführt wird, Übertragen einer zweiten Nachricht an die Schicht-2-Schaltung (302), um den Schnell-Umschalt-Tunnel abzubauen, optional ferner umfassend:

    Empfangen zusätzlicher Daten an dem drahtlosen Standby-Controller (118), nachdem der Schnell-Umschalt-Tunnel abgebaut wurde.


     
    7. Verfahren nach Anspruch 5 oder 6, wobei die Übermittlung der Nachricht (324) an die Schicht-2-Schaltung (302) zur Aktivierung des Schnell-Umschalt-Tunnels erfolgt, nachdem der aktive drahtlose Controller (110) seine Arbeit eingestellt hat.
     
    8. Verfahren nach einem der Ansprüche 5 bis 7, das ferner Folgendes umfasst:
    Umschalten des Datenflusses von dem aktiven drahtlosen Controller (110) auf den drahtlosen Standby-Controller (118) .
     
    9. Verfahren nach einem der Ansprüche 5 bis 8, wobei die Daten von einem Gateway (114) zur Schicht-2-Schaltung (302) empfangen werden.
     
    10. Verfahren nach einem der Ansprüche 5 bis 9, das ferner Folgendes umfasst:
    Empfangen zusätzlicher Daten an dem drahtlosen Standby-Controller (118), nachdem MAC-Einträge für Clients (102, 104) von Zugangspunkten (106), die dem drahtlosen Standby-Controller (118) zugeordnet sind, abgeschlossen sind und nachdem der Schnell-Umschalt-Tunnel abgebaut wurde.
     
    11. Vorrichtung, die Folgendes umfasst:

    ein Mittel zum Empfangen (502), an einer Schicht-2-Schaltung (302), einer ersten Nachricht, um einen Schnell-Umschalt-Tunnel zum Umschalten von einem ersten drahtlosen Controller (110) zu einem zweiten drahtlosen Controller (118) aufzubauen, wobei der Schnell-Umschalt-Tunnel zwischen der Schicht-2-Schaltung (302) und dem zweiten drahtlosen Controller (118) liegt, wobei der erste drahtlose Controller (110) ein aktiver drahtloser Controller ist, und wobei der zweite drahtlose Controller (118) ein drahtloser Standby-Controller ist;

    ein Mittel zum Einrichten, durch die Schicht-2-Schaltung (302), als Reaktion auf den Empfang der ersten Nachricht, des Schnell-Umschalt-Tunnels als Standby-Backup-Pfad zu dem zweiten drahtlosen Controller (118) für Daten, die für den ersten drahtlosen Controller (110) bestimmt sind;

    ein Mittel zum Empfangen (504), an der Schicht-2-Schaltung (302), einer zweiten Nachricht (324), um die Verwendung des Schnell-Umschalt-Tunnels auszulösen;

    ein Mittel zum Aktivieren des Schnell-Umschalt-Tunnels als Reaktion auf den Empfang der zweiten Nachricht;

    ein Mittel zum Empfangen (506) von Daten an der Schicht-2-Schaltung (302), die für den ersten drahtlosen Controller (110) bestimmt sind; und

    ein Mittel zum Weiterleiten (508) der Daten an den zweiten drahtlosen Controller (118) durch den Schnell-Umschalt-Tunnel anstelle des ersten drahtlosen Controllers (110), um von dem aktiven drahtlosen Controller zu dem drahtlosen Standby-Controller zu wechseln.


     
    12. Vorrichtung nach Anspruch 11, das ferner ein Mittel zum Implementieren des Verfahrens nach einem der Ansprüche 2 bis 4 umfasst.
     
    13. Vorrichtung, die Folgendes umfasst:

    ein Mittel zum Empfangen (602), an einem drahtlosen Standby-Controller (118) und von einem aktiven drahtlosen Controller (110), einer MAC-Adresse einer Schicht-2-Schaltung (302);

    ein Mittel zum Übertragen (604), nachdem die Schicht-2-Schaltung (302) einen Schnell-Umschalt-Tunnel zwischen der Schicht-2-Schaltung (302) und dem drahtlosen Standby-Controller (118) aufgebaut hat, einer Nachricht (324) an die Schicht-2-Schaltung (302), um den Schnell-Umschalt-Tunnel zu aktivieren; und

    ein Mittel zum Empfangen (606) von Daten, die ursprünglich für den aktiven drahtlosen Controller (110) bestimmt waren, an dem drahtlosen Standby-Controller (118) über den Schnell-Umschalt-Tunnel.


     
    14. Vorrichtung nach Anspruch 13, das ferner ein Mittel zum Implementieren des Verfahrens nach einem der Ansprüche 6 bis 10 umfasst.
     
    15. Computerprogramm, Computerprogrammprodukt oder computerlesbares Medium mit Anweisungen, die, wenn sie von einem Computer ausgeführt werden, den Computer veranlassen, die Schritte des Verfahrens nach einem der Ansprüche 1 bis 4 oder einem der Ansprüche 5 bis 10 auszuführen.
     


    Revendications

    1. Procédé de transition d'un contrôleur sans fil actif à un contrôleur sans fil de secours, comprenant :

    la réception (502), au niveau d'un commutateur de couche 2 (302), d'un premier message pour établir un tunnel de recommutation rapide pour passer d'un premier contrôleur sans fil (110) à un second contrôleur sans fil (118), dans lequel le tunnel de recommutation rapide se trouve entre le commutateur de couche 2 (302) et le second contrôleur sans fil (118), dans lequel le premier contrôleur sans fil (110) est un contrôleur sans fil actif, et le second contrôleur sans fil (118) est un contrôleur sans fil de secours ;

    en réponse à la réception du premier message, l'établissement, par le commutateur de couche 2 (302), du tunnel de recommutation rapide comme chemin de secours ou de sauvegarde vers le second contrôleur sans fil (118) pour des données destinées au premier contrôleur sans fil (110). ;

    la réception (504), au niveau du commutateur de couche 2 (302), d'un deuxième message (324) pour déclencher l'utilisation du tunnel de recommutation rapide ;

    en réponse à la réception du deuxième message, l'activation du tunnel de recommutation rapide ;

    la réception (506) de données au niveau du commutateur de couche 2 (302) destinées au premier contrôleur sans fil (110) ; et

    le transfert (508) des données au second contrôleur sans fil (118) par l'intermédiaire du tunnel de recommutation rapide au lieu du premier contrôleur sans fil (110) pour passer du contrôleur sans fil actif au contrôleur sans fil de secours.


     
    2. Procédé selon la revendication 1, dans lequel le commutateur de couche 2 (302) reçoit le premier message à partir du premier contrôleur sans fil (110).
     
    3. Procédé selon l'une quelconque des revendications 1 à 2, comprenant en outre :
    la réception, au niveau du commutateur de couche 2 (302), d'une adresse MAC du second contrôleur sans fil (118) .
     
    4. Procédé selon l'une quelconque des revendications 1 à 3, comprenant en outre :
    la réception, au niveau du commutateur de couche 2 (302), d'un troisième message ordonnant au commutateur de couche 2 (302) de supprimer le tunnel de recommutation rapide, dans lequel, facultativement, la réception du troisième message intervient après l'achèvement d'un processus de transmission de protocole de résolution d'adresse gratuit associé au second contrôleur sans fil (118) .
     
    5. Procédé comprenant :

    la réception (602), au niveau d'un contrôleur sans fil de secours (118) et à partir d'un contrôleur sans fil actif (110), d'une adresse MAC d'un commutateur de couche 2 (302) ;

    la transmission (604), après que le commutateur de couche 2 (302) a établi un tunnel de recommutation rapide entre le commutateur de couche 2 (302) et le contrôleur sans fil de secours (118), d'un message (324) au commutateur de couche 2 (302) pour activer le tunnel de recommutation rapide ; et

    la réception (606) de données initialement destinées au contrôleur sans fil actif (110) au niveau du contrôleur sans fil de secours (118) par l'intermédiaire du tunnel de recommutation rapide.


     
    6. Procédé selon la revendication 5, comprenant en outre :
    la transmission d'un avis de protocole de résolution d'adresse gratuit à des clients du contrôleur sans fil de secours (118), dans lequel, facultativement, après l'achèvement d'un processus de remplissage d'une table MAC avec des entrées pour les clients sur la base de la transmission de l'avis de protocole de résolution d'adresse gratuit, la transmission d'un deuxième message au commutateur de couche 2 (302) pour supprimer le tunnel de recommutation rapide, comprenant facultativement en outre :
    la réception de données supplémentaires au niveau du contrôleur sans fil de secours (118) après la suppression du tunnel de commutation rapide.
     
    7. Procédé selon la revendication 5 ou 6, dans lequel la transmission du message (324) au commutateur de couche 2 (302) pour activer le tunnel de recommutation rapide a lieu après que le contrôleur sans fil actif (110) cesse de fonctionner.
     
    8. Procédé selon l'une quelconque des revendications 5 à 7, comprenant en outre :
    la commutation du flux de données depuis le contrôleur sans fil actif (110) vers le contrôleur sans fil de secours (118) .
     
    9. Procédé selon l'une quelconque des revendications 5 à 8, dans lequel les données sont reçues à partir d'une passerelle (114) vers le commutateur de couche 2 (302).
     
    10. Procédé selon l'une quelconque des revendications 5 à 9, comprenant en outre :
    la réception de données supplémentaires au niveau du contrôleur sans fil de secours (118) une fois que des entrées MAC pour des clients (102, 104) de points d'accès (106) associés au contrôleur sans fil de secours (118) sont terminées et que le tunnel de recommutation rapide a été supprimé.
     
    11. Appareil comprenant :

    des moyens pour recevoir (502), au niveau d'un commutateur de couche 2 (302), un premier message pour établir un tunnel de recommutation rapide pour passer d'un premier contrôleur sans fil (110) à un second contrôleur sans fil (118), dans lequel le tunnel de recommutation rapide se trouve entre le commutateur de couche 2 (302) et le second contrôleur sans fil (118), dans lequel le premier contrôleur sans fil (110) est un contrôleur sans fil actif, et le second contrôleur sans fil (118) est un contrôleur sans fil de secours ;

    des moyens pour établir, par le commutateur de couche 2 (302), en réponse à la réception du premier message, le tunnel de recommutation rapide comme chemin de secours ou de sauvegarde vers le second contrôleur sans fil (118) pour des données destinées au premier contrôleur sans fil (110) ;

    des moyens pour recevoir (504), au niveau du commutateur de couche 2 (302), un deuxième message (324) pour déclencher l'utilisation du tunnel de recommutation rapide ;

    des moyens pour activer, en réponse à la réception du deuxième message, le tunnel de recommutation rapide ;

    des moyens pour recevoir (506) des données au niveau du commutateur de couche 2 (302) destinées au premier contrôleur sans fil (11 0) ; et

    des moyens pour transférer (508) les données au second contrôleur sans fil (118) par l'intermédiaire du tunnel de recommutation rapide au lieu du premier contrôleur sans fil (110) pour passer du contrôleur sans fil actif au contrôleur sans fil de secours.


     
    12. Appareil selon la revendication 11, comprenant en outre des moyens pour mettre en œuvre le procédé selon l'une quelconque des revendications 2 à 4.
     
    13. Appareil comprenant :

    des moyens pour recevoir (602), au niveau d'un contrôleur sans fil de secours (118) et à partir d'un contrôleur sans fil actif (110), une adresse MAC d'un commutateur de couche 2 (302) ;

    des moyens pour transmettre (604), après que le commutateur de couche 2 (302) a établi un tunnel de recommutation rapide entre le commutateur de couche 2 (302) et le contrôleur sans fil de secours (118), un message (324) au commutateur de couche 2 (302) pour activer le tunnel de recommutation rapide ; et

    des moyens pour recevoir (606) des données initialement destinées au contrôleur sans fil actif (110) au niveau du contrôleur sans fil de secours (118) par l'intermédiaire du tunnel de recommutation rapide.


     
    14. Appareil selon la revendication 13, comprenant en outre des moyens pour mettre en œuvre le procédé selon l'une quelconque des revendications 6 à 10.
     
    15. Programme informatique, produit programme informatique ou support lisible par ordinateur comprenant des instructions qui, lorsqu'elles sont exécutées par un ordinateur, amènent l'ordinateur à exécuter les étapes du procédé selon l'une quelconque des revendications 1 à 4 ou l'une quelconque des revendications 5 à 10.
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description