(19)
(11) EP 3 457 050 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
03.04.2024 Bulletin 2024/14

(21) Application number: 16901624.3

(22) Date of filing: 10.05.2016
(51) International Patent Classification (IPC): 
F25B 7/00(2006.01)
F25B 30/02(2006.01)
F25B 47/02(2006.01)
F25B 1/00(2006.01)
F25B 25/00(2006.01)
(52) Cooperative Patent Classification (CPC):
F25B 1/00; F25B 7/00; F25B 30/02; F25B 25/005; F25B 47/02; F25B 2339/047; F25B 2400/061; F25B 2700/197; F25B 2700/21161; F25B 2700/21175
(86) International application number:
PCT/JP2016/063892
(87) International publication number:
WO 2017/195275 (16.11.2017 Gazette 2017/46)

(54)

HEAT PUMP SYSTEM

WÄRMEPUMPENSYSTEM

SYSTÈME DE POMPE À CHALEUR


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
20.03.2019 Bulletin 2019/12

(73) Proprietor: Mitsubishi Electric Corporation
Chiyoda-ku Tokyo 100-8310 (JP)

(72) Inventor:
  • KADOWAKI, Kimitaka
    Tokyo 100-8310 (JP)

(74) Representative: Mewburn Ellis LLP 
Aurora Building Counterslip
Bristol BS1 6BX
Bristol BS1 6BX (GB)


(56) References cited: : 
EP-A1- 2 827 068
WO-A1-2010/013590
JP-A- H01 314 864
JP-A- 2011 257 036
EP-A2- 1 394 482
JP-A- H0 336 467
JP-A- 2011 257 036
US-A1- 2015 114 019
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention relates to a heat pump system in which two refrigeration cycles are connected.

    Background Art



    [0002] Conventionally, to generate high-temperature hot water using fluorocarbon-based refrigerant, a heat pump cycle using natural refrigerant for achieving high efficiency, or a cascade refrigeration cycle using fluorocarbon-based refrigerant such as R134a has been proposed (for example, see Patent Literature 1).

    Citation List


    Patent Literature



    [0003] 

    Patent Literature 1: Japanese Unexamined Patent Application Publication No. 2012-42177

    Patent Literature 2: EP 2827068A1 discloses a heat pump intended to supply hot water to a heating network and comprising two heat pumps constituting two hydraulic circuits (P1, P2) coupled in cascade, a first hydraulic circuit for the lowest temperatures and a second hydraulic circuit for the highest, each comprising an evaporator (1, 5) and a condenser (2, 6) separated on the one hand by a compressor (3, 7) located between the output of the secondary of the evaporator (1, 5) and the inlet of the primary of the condenser (2, 6) and on the other hand by an expansion valve (4, 8) placed between the outlet of the primary of the condenser (2, 6) and the inlet of the secondary of the evaporator (1 , 5). This pump is characterized in that the secondary of the condenser (2) of the first circuit (P1) is connected in parallel to the heating network and to the primary of the evaporator (5) of the second circuit (P2) whose output is also connected to the heating network, a tank (9, 13) as well as selection means (11) of the heating network or of the second circuit (P2) being arranged between the two hydraulic circuits (P1, P2).

    Patent Literature 3: JP 2011 257036A discloses temperature adjustment device

    Patent Literature 4: US 2015/0114019A1 discloses heat pump system using latent heat


    Summary of Invention


    Technical Problem



    [0004] Here, the heat pump cycle using the natural refrigerant described above has a serious problem in respect of techniques and costs since a pressure to compress refrigerant such as CO2 is extremely high and combustible HC-based refrigerant is used.

    [0005] On the other hand, in the heat pump of the cascade refrigeration cycle described in Patent Literature 1, an evaporation heat quantity of an evaporator of a high order side refrigerant circuit and a heating quantity of a condenser of a low order side refrigerant circuit need to be balanced at all times. Therefore, in the field of hot water supply in which the pressure inside the high order side refrigerant circuit is maintained high, keeping the balance mentioned above is a serious technical subject, and hence there is a problem that it is difficult to highly efficiently and stably generate high-temperature water.

    [0006] The present invention has been attained to solve the above-described problems, and an object of the present invention is to provide a heat pump system that highly efficiently and stably generates high-temperature water without performing complicated control in a refrigerant circuit.

    Solution to Problem



    [0007] A heat pump system according to the present invention is as set forth in claim 1.

    Advantageous Effects of Invention



    [0008] According to an embodiment of the present invention, since an evaporating pressure or an evaporating temperature of refrigerant inside a high temperature heating side evaporator can be stabilized, a heat pump system that highly efficiently and stably generates high-temperature water can be obtained.

    Brief Description of Drawings



    [0009] 

    [Fig. 1] Fig. 1 is a circuit diagram of a conventional heat pump system using a cascade refrigeration cycle.

    [Fig. 2] Fig. 2 is a schematic block diagram of a heat pump system in an embodiment of the present invention.

    [Fig. 3] Fig. 3 is a state diagram illustrating control relationship of a control unit of the heat pump system in the embodiment of the present invention.

    [Fig. 4] Fig. 4 is a schematic block diagram at the time of operating a low temperature heating side refrigerant circuit of the heat pump system in the embodiment of the present invention.

    [Fig. 5] Fig. 5 is a schematic block diagram at the time of operating a high temperature heating side refrigerant circuit of the heat pump system in the embodiment of the present invention.

    [Fig. 6] Fig. 6 is a schematic block diagram at the time of taking out two kinds of hot water from the heat pump system in the embodiment of the present invention. Description of Embodiments



    [0010] An embodiment of a heat pump system of the present invention will be described hereinafter with reference to the drawings. Note that a form in the drawings is just an example and does not limit the present invention. In addition, components designated by the same signs in the individual drawings are the same or equivalents, and the same applies throughout the description. Further, in the following drawings, relationship of sizes of individual components is often different from the actual relationship.

    Embodiment.



    [0011] For easy understanding of the heat pump system according to the embodiment of the present invention, a heat pump system using a conventional cascade refrigeration cycle will be described first. Fig. 1 is a circuit diagram of the heat pump system using the conventional cascade refrigeration cycle.

    [0012] As illustrated in Fig. 1, a heat pump system 200 includes a low order side refrigerant circuit C and a high order side refrigerant circuit D. The low order side refrigerant circuit C is configured such that a compressor 108, a refrigerant heat exchanger 101, an expansion valve 102, and an evaporator 103 are successively connected by a pipe. The high order side refrigerant circuit D is configured such that a compressor 104, a condenser 105, an expansion valve 106, and the refrigerant heat exchanger 101 are successively connected by a pipe. Refrigerant of the low order side refrigerant circuit C and refrigerant of the high order side refrigerant circuit D exchange heat with each other in the refrigerant heat exchanger 101, and thus the heat pump system 200 using the cascade refrigeration cycle is configured.

    [0013] Note that R410A or other such refrigerants are suitable as the refrigerant of the low order side refrigerant circuit C in the heat pump system 200, and R134a or other such refrigerants are suitable as the refrigerant of the high order side refrigerant circuit D.

    [0014] In the low order side refrigerant circuit C, high-temperature and high-pressure gas refrigerant compressed in the compressor 108 is cooled by heat exchange with the refrigerant of the high order side refrigerant circuit D in the refrigerant heat exchanger 101, and is condensed and liquefied. The condensed and liquefied high-pressure liquid refrigerant is, after being depressurized by the expansion valve 102, evaporated by heat exchange with outdoor air in the evaporator 103 to become low-temperature and low-pressure gas refrigerant, and then returns to the compressor 108 again. The refrigerant cycle is thus configured.

    [0015] Similarly, in the high order side refrigerant circuit D, high-temperature and high-pressure gas refrigerant compressed in the compressor 104 is cooled, condensed and liquefied by temperature-decreased water on a load side in the condenser 105. The condensed and liquefied high-pressure liquid refrigerant is, after being depressurized by the expansion valve 106, evaporated by heat exchange with the refrigerant of the low order side refrigerant circuit C in the refrigerant heat exchanger 101, becomes low-temperature and low-pressure gas refrigerant, and then returns to the compressor 104 again. The refrigerant cycle is thus configured.

    [0016] Here, water passing through a water circuit 107 exchanges heat with the refrigerant of the high order side refrigerant circuit D circulated through the condenser 105, and thus a temperature of the water is raised from 10 degrees C to 90 degrees C, for example.

    [0017] In this way, in the conventional heat pump system 200 using the cascade refrigeration cycle, the high order side refrigerant circuit D and the low order side refrigerant circuit C are connected through the refrigerant heat exchanger 101. Then, in the high order side refrigerant circuit D, by allowing the water on the load side to pass through the condenser 105, the water at 10 degrees C is heated to hot water at 90 degrees C, for example. Thus, to stably heat the water on the load side, an evaporating temperature of the refrigerant in the refrigerant heat exchanger 101 of the high order side refrigerant circuit D and a condensing temperature of the refrigerant in the refrigerant heat exchanger 101 of the low order side refrigerant circuit C need to be optimally balanced at all times, posing a serious technical problem. As described above, in the conventional heat pump system using the cascade refrigeration cycle, it is difficult to highly efficiently and stably generate high-temperature water.

    [Configuration of refrigerant circuit]



    [0018] Fig. 2 is a schematic block diagram of the heat pump system in the embodiment of the present invention. As illustrated in Fig. 2, a heat pump system 100 includes a high temperature heating side refrigerant circuit A and a low temperature heating side refrigerant circuit B. The high temperature heating side refrigerant circuit A is configured such that a high temperature heating side compressor 8, a high temperature heating side condenser 1, a high temperature heating side expansion valve 11, and a high temperature heating side evaporator 2 are successively connected by a refrigerant pipe. In addition, the low temperature heating side refrigerant circuit B is configured such that a low temperature heating side compressor 9, a low temperature heating side condenser 4, a low temperature heating side expansion valve 12, and a low temperature heating side evaporator 6 are successively connected by a refrigerant pipe.

    [0019] In the high temperature heating side refrigerant circuit A, high-temperature and high-pressure gas refrigerant compressed in the high temperature heating side compressor 8 is cooled by heat exchange with the water on the load side flowing from a pipe 22b to a pipe 22c, and is condensed and liquefied in the high temperature heating side condenser 1. The condensed and liquefied high-pressure liquid refrigerant is, after being depressurized by the high temperature heating side expansion valve 11, evaporated by heat exchange with the water flowing from a pipe 20d to a pipe 20e in the high temperature heating side evaporator 2, becomes low-temperature and low-pressure gas refrigerant, and then returns to the high temperature heating side compressor 8 again. The refrigeration cycle is thus configured. Note that the water corresponds to "liquid" in the present invention.

    [0020]  In the low temperature heating side refrigerant circuit B, high-temperature and high-pressure gas refrigerant compressed in the low temperature heating side compressor 9 is cooled by heat exchange with the water on the load side flowing from a pipe 20a to a pipe 20b, and is condensed and liquefied in the low temperature heating side condenser 4. The condensed and liquefied high-pressure liquid refrigerant is, after being depressurized by the low temperature heating side expansion valve 12, evaporated by heat exchange with air or other media in the low temperature heating side evaporator 6, becomes low-temperature and low-pressure gas refrigerant, and then returns to the low temperature heating side compressor 9 again. The refrigeration cycle is thus configured.

    [Configuration of water circuit]



    [0021] The low temperature heating side refrigerant circuit B of the heat pump system 100 includes a low temperature side water supply port 30 configured to supply water heated by utilizing waste heat, and a low temperature side tank 32 configured to store the water that is supplied and heated in the low temperature heating side refrigerant circuit B. In addition, the high temperature heating side refrigerant circuit A of the heat pump system 100 includes a high temperature side water supply port 31 configured to supply water, and a high temperature side tank 33 configured to store the water that is supplied and heated in the high temperature heating side refrigerant circuit A.

    [0022] Note that the low temperature side water supply port 30 corresponds to a "low temperature side liquid supply port" in the present invention. In addition, the high temperature side water supply port 31 corresponds to a "high temperature side liquid supply port" in the present invention.

    [0023] As illustrated in Fig. 2, the low temperature side water supply port 30 and the low temperature heating side condenser 4 are connected through the pipe 20a. In addition, the low temperature heating side condenser 4 and a pipe 20c are connected through the pipe 20b. The pipe 20b is provided with a pump 5 to feed the water from the low temperature heating side condenser 4 to the pipe 20c and the high temperature heating side evaporator 2. One end of the pipe 20c is connected to a motor-operated valve 7, and the other end of the pipe 20c is connected to a three-way valve 3. The three-way valve 3 is provided between the pipe 20d on the side of the high temperature heating side evaporator 2 and the pipe 20c on the side of the low temperature heating side condenser 4, and is connected to the high temperature heating side evaporator 2 through the pipe 20d. The high temperature heating side evaporator 2 is connected to a water return port 16 through the pipe 20e. The water return port 16 communicates with a water return port 17 and the water return port 17 is connected to the pipe 20a so that the water that has passed through the high temperature heating side evaporator 2 and is having the waste heat joins the pipe 20a. Further, the three-way valve 3 and a three-way valve 10 are connected through a pipe 23. On the other hand, the motor-operated valve 7 and the low temperature side tank 32 are connected through a pipe 21.

    [0024] Note that the pipe 20a, the pipe 20b, the pipe 20c, the pipe 20d, and the pipe 20e correspond to a "first pipe" in the present invention. In addition, the three-way valve 3 corresponds to a "first three-way valve" in the present invention. Furthermore, the pipe 23 corresponds to a "third pipe" in the present invention. In addition, the three-way valve 10 corresponds to a "second three-way valve" in the present invention.

    [0025] The high temperature side water supply port 31 and the three-way valve 10 are connected through a pipe 22a. In addition, the three-way valve 10 and the high temperature heating side condenser 1 are connected through the pipe 22b. Furthermore, the high temperature heating side condenser 1 and the high temperature side tank 33 are connected through the pipe 22c. Note that the pipe 22a, the pipe 22b and the pipe 22c correspond to a "second pipe" in the present invention.

    [0026]  In this way, by connecting devices configuring the heat pump system 100 by the individual pipes, the water circuit from the low temperature side water supply port 30 to the low temperature side tank 32 and the water circuit from the high temperature side water supply port 31 to the high temperature side tank 33 are formed. In addition, the water circuit from the low temperature side water supply port 30 through the low temperature heating side condenser 4 and the three-way valve 3 to the high temperature heating side evaporator 2 is also formed.

    [0027] In addition, the heat pump system 100 includes a temperature sensor 13, a pressure sensor 14, a temperature sensor 15 and a control unit 18 to be described later in Fig. 3.

    [Control unit]



    [0028] Fig. 3 is a state diagram illustrating control relationship of a control unit of the heat pump system in the embodiment of the present invention. As illustrated in Fig. 3, the control unit 18 comprises a microcomputer, for example, and controls drive of the three-way valve 3, the pump 5, the motor-operated valve 7 and the three-way valve 10. In addition, the control unit 18 allows the pressure sensor 14 provided in the refrigerant pipe on a downstream side of the high temperature heating side evaporator 2 to detect an evaporating pressure of the refrigerant in the high temperature heating side evaporator 2. Furthermore, the control unit 18 allows the temperature sensor 13 provided in the refrigerant pipe on the downstream side of the high temperature heating side evaporator 2 to detect an evaporating temperature of the refrigerant in the high temperature heating side evaporator 2. Further, the control unit 18 detects a temperature of the hot water flowing out from the high temperature heating side condenser 1 by the temperature sensor 15 provided in the pipe 22c on the downstream side of the high temperature heating side condenser 1. Note that the temperature sensor 13 and the temperature sensor 15 are configured by a thermistor, for example. Note that, while an example that the control unit 18 is provided inside the high temperature heating side refrigerant circuit A is illustrated in the present embodiment, the present invention is not limited thereto and the control unit 18 may be provided in a place other than the high temperature heating side refrigerant circuit A.

    [Control example of control unit]



    [0029] The control unit 18 determines an optimum value of the evaporating temperature or the evaporating pressure of the refrigerant on the downstream of the high temperature heating side evaporator 2, from a target hot water temperature of the hot water generated in the high temperature heating side refrigerant circuit A and a utilization temperature of the waste heat of the hot water utilizing the waste heat supplied from the low temperature side water supply port 30. For example, in the control unit 18, the temperature of the water heated in the high temperature heating side refrigerant circuit A or the temperature of the water heated in the low temperature heating side refrigerant circuit B is detected, and the pump 5 is controlled to attain a heating quantity required in the low temperature heating side condenser 4 by predetermined calculation. Or, in the control unit 18, power consumption of the high temperature heating side refrigerant circuit A and the low temperature heating side refrigerant circuit B is measured, and the pump 5 is controlled to attain the heating quantity required in the low temperature heating side condenser 4 by predetermined calculation.

    [0030] In addition, the control unit 18 controls the three-way valve 3, and controls a flow rate of the water to the high temperature heating side evaporator 2 so that the evaporating temperature or the evaporating pressure of the high temperature heating side evaporator 2 becomes the optimum value. Furthermore, the control unit 18 controls the three-way valve 10 to allow the hot water heated in the low temperature heating side condenser 4 to flow into the three-way valve 10, to allow the water to be mixed with the water flowing from the high temperature side water supply port 31 into the high temperature heating side condenser 1.

    [0031]  In addition, as another control example of the control unit 18, the temperature of the water heated by the high temperature heating side condenser 1 and detected by the temperature sensor 15 and the evaporating temperature of the refrigerant detected by the temperature sensor 13 or the evaporating pressure of the refrigerant detected by the pressure sensor 14 are detected, and the pump 5 and the three-way valve 3 are controlled on the basis of predetermined calculation.

    [0032] Furthermore, as another control example of the control unit 18, a target temperature of the water generated in the high temperature heating side refrigerant circuit A is detected, and operation of the low temperature heating side refrigerant circuit B and the high temperature heating side refrigerant circuit A and the three-way valve 3 are controlled.

    [Operation of low temperature heating side refrigerant circuit B alone]



    [0033] Fig. 4 is a schematic block diagram at the time of operating the low temperature heating side refrigerant circuit of the heat pump system in the embodiment of the present invention. Note that a thick solid line arrow in Fig. 4 indicates flow of the water. As illustrated in Fig. 4, the control unit 18 drives the pump 5, and makes the water flow from the low temperature side water supply port 30 through the pipe 20a into the low temperature heating side condenser 4. Then, the water flowing into the low temperature heating side condenser 4 exchanges heat with high-pressure and high-temperature refrigerant flowing into the low temperature heating side condenser 4 of the low temperature heating side refrigerant circuit B, and a liquid temperature rises from 30 degrees C to 40 degrees C, for example. The water flowing out from the low temperature heating side condenser 4 passes through the pipe 20b and the pipe 21 and is stored in the low temperature side tank 32.

    [0034] In this way, there is a case where the target temperature of the water is set at about 40 degrees C for a heating use or other uses through contact input or other input from a remote controller or a central control panel, for example. At the time, the control unit 18 stops the high temperature heating side compressor 8, closes the three-way valve 3, drives the low temperature heating side compressor 9, opens the motor-operated valve 7, operates the low temperature heating side refrigerant circuit B alone, and generates low-temperature hot water in the water circuit.

    [Operation of high temperature heating side refrigerant circuit A alone]



    [0035] Fig. 5 is a schematic block diagram at the time of operating the high temperature heating side refrigerant circuit of the heat pump system in the embodiment of the present invention. Note that a thick solid line arrow in Fig. 5 indicates the flow of the water. As illustrated in Fig. 5, the control unit 18 control the three-way valve 10 so that the water is circulated from the pipe 22a to the pipe 22b, and allows the water to be frown from the high temperature side water supply port 31 to the high temperature heating side condenser 1 through the pipe 22a and the pipe 22b. Then, the water flowing into the high temperature heating side condenser 1 exchanges the heat with the high-pressure and high-temperature refrigerant flowing into the high temperature heating side condenser 1 of the high temperature heating side refrigerant circuit A, and the liquid temperature rises to 90 degrees C that is higher than the liquid temperature of the hot water generated in the low temperature heating side refrigerant circuit B, for example. The water flowing out from the high temperature heating side condenser 1 passes through the pipe 22c and is stored in the high temperature side tank 33.

    [0036] In this way, there is a case where the target temperature of the water is set at about 90 degrees C through contact input or other input from a remote controller or a central control panel or other devices, for example, and high-temperature waste water is stably obtained from the high temperature side water supply port 31. At this time, the control unit 18 stops the low temperature heating side compressor 9, performs control so that the three-way valve 10 circulates the water only from the pipe 22a to the pipe 22b, drives the high temperature heating side compressor 8, operates the high temperature heating side refrigerant circuit A alone, and generates high-temperature hot water in the water circuit.

    [Operation of high temperature heating side refrigerant circuit A and low temperature heating side refrigerant circuit B]



    [0037] Fig. 6 is a schematic block diagram at the time of taking out two kinds of hot water from the heat pump system in the embodiment of the present invention. Note that a thick solid line arrow in Fig. 6 indicates the flow of the water. As illustrated in Fig. 6, the control unit 18 drives the pump 5, opens the motor-operated valve 7, adjusts an opening degree of the three-way valve 3, and makes the water flow from the low temperature side water supply port 30 through the pipe 20a into the low temperature heating side condenser 4. Then, the water flowing into the low temperature heating side condenser 4 exchanges the heat with the high-pressure and high-temperature refrigerant flowing into the low temperature heating side condenser 4 of the low temperature heating side refrigerant circuit B, and the liquid temperature rises from 30 degrees C to 40 degrees C, for example. The water flowing out from the low temperature heating side condenser 4 passes through the pipe 20b and the pipe 21 and is separated into the water to be stored in the low temperature side tank 32 and the water to be sent to the three-way valve 3.

    [0038] The control unit 18 controls the three-way valve 3 such that the water is circulated from the pipe 20c to the pipe 20d. Then, the water sent to the three-way valve 3 is sent to the high temperature heating side evaporator 2, exchanges the heat with the refrigerant circulated in the high temperature heating side evaporator 2 of the high temperature heating side refrigerant circuit A, and evaporates the refrigerant. Here, since the water sent to the high temperature heating side evaporator 2 is heated by the low temperature heating side condenser 4 and is at 40 degrees C stably, for example, the evaporating temperature and the evaporating pressure of the refrigerant in the high temperature heating side evaporator 2 can be stabilized.

    [0039] The water sent to the high temperature heating side evaporator 2 flows out from the high temperature heating side evaporator 2, and is sent through the pipe 20e to the water return port 16. The water sent to the water return port 16 is sent to the water return port 17, joins the water utilizing the waste heat supplied from the low temperature side water supply port 30, and is sent to the low temperature heating side condenser 4 again. Here, the control unit 18 adjusts the opening degree of the three-way valve 3 by predetermined calculation so that the evaporating temperature of the refrigerant detected in the temperature sensor 13 or the evaporating pressure detected in the pressure sensor 14 becomes a fixed value or greater, thereby to bring the liquid temperature of the water heated in the high temperature heating side condenser 1 detected in the temperature sensor 15 close to the target liquid temperature.

    [Defrosting operation]



    [0040] When the heat pump system 100 is operated under a low outdoor air condition of a winter season or other conditions, frost adheres to the low temperature heating side evaporator 6 and a defrosting operation needs to be performed. At this time, the hot water from the high temperature side tank 33 storing the high-temperature water heated in the high temperature heating side refrigerant circuit A is made to pass through in the order of the pipe 22c, the pipe 22b, the three-way valve 10, the pipe 23, the three-way valve 3, the pipe 20c and the pipe 20b, and is made to flow back to the low temperature heating side condenser 4. In such a manner, the high-temperature water heated in the high temperature heating side refrigerant circuit A can be used as a heat source for defrosting the low temperature heating side refrigerant circuit B, and defrosting time can be shortened.

    [0041] As described above, it is possible to take out technically easily, highly efficiently and stably the hot water that is needed not only in a house but also in a building or a factory or other facilities.

    [0042]  Note that, as the refrigerant used in the low temperature heating side refrigerant circuit B, R32, R410A, or R407C is used, for example. On the other hand, as the refrigerant used in the high temperature heating side refrigerant circuit A using ammonia, R1234yf, R1234ze, R245fa, or HC-based refrigerant is used, for example.

    [Effects of embodiment]



    [0043] From the above, the heat pump system 100 includes: the low temperature heating side refrigerant circuit B in which the low temperature heating side compressor 9, the low temperature heating side condenser 4, the low temperature heating side expansion valve 12 and the low temperature heating side evaporator 6 are successively connected by a refrigerant pipe; the high temperature heating side refrigerant circuit A in which the high temperature heating side compressor 8, the high temperature heating side condenser 1, the high temperature heating side expansion valve 11 and the high temperature heating side evaporator 2 are successively connected by a refrigerant pipe; the first pipe configured to connect a low temperature side liquid supply port, the low temperature heating side condenser 4, and the high temperature heating side evaporator 2 in this order, thereby to circulate the liquid; the second pipe configured to connect a high temperature side liquid supply port and the high temperature heating side condenser 1 in this order, thereby to circulate the liquid; the pump provided in the first pipe and configured to feed the liquid heated in the low temperature heating side condenser 4 to the high temperature heating side evaporator 2; the control valve provided in the first pipe between the low temperature heating side condenser 4 and the high temperature heating side evaporator 2 and configured to control the flow rate of the liquid circulated inside the first pipe; and the control unit 18 configured to control at least one of the pump 5 and the control valve, and control the flow rate of the liquid fed from the low temperature heating side condenser 4 to the high temperature heating side evaporator 2.

    [0044] In such a manner, since the evaporating pressure or the evaporating temperature of the refrigerant inside the high temperature heating side evaporator 2 can be stabilized, the heat pump system that highly efficiently and stably generates high-temperature water can be obtained.

    [0045] In addition, the control unit 18 controls the pump 5 and the control valve based on the temperature of the liquid heated by the high temperature heating side condenser 1, and the evaporating temperature of the refrigerant in the high temperature heating side evaporator 2 or the evaporating pressure of the refrigerant in the high temperature heating side evaporator 2.

    [0046] In such a manner, since the evaporating pressure or the evaporating temperature of the refrigerant inside the high temperature heating side evaporator 2 can be stabilized, the heat pump system that highly efficiently and stably generates high-temperature water can be obtained.

    [0047] In addition, the control unit 18 detects the target temperature of the liquid generated in the high temperature heating side refrigerant circuit A, and controls the operation of the low temperature heating side refrigerant circuit B and the high temperature heating side refrigerant circuit A, and the control valve.

    [0048] In such a manner, like the operation of the high temperature heating side refrigerant circuit A alone or the operation of the low temperature heating side refrigerant circuit B alone, adapting to the operation demanded by a user can be flexibly performed.

    [0049] Furthermore, the temperature of the liquid circulated in the second pipe and heated in the high temperature heating side condenser 1 is higher than the temperature of the liquid circulated in the first pipe and heated in the low temperature heating side condenser 4.

    [0050] In such a manner, the hot water at different temperatures can be obtained in one heat pump system 100.

    [0051]  In addition, the control valve is a first three-way valve, and the heat pump system 100 further includes: the second three-way valve provided in the second pipe between the high temperature side liquid supply port and the high temperature heating side condenser 1; and the third pipe configured to connect the first three-way valve and the second three-way valve.

    [0052] In such a manner, the stable high-temperature water can be supplied from the first three-way valve to the second pipe, and the temperature of the water circulated in the second pipe can be elevated.

    [0053] Furthermore, the liquid heated in the high temperature heating side refrigerant circuit A is circulated through the second pipe, the third pipe and the first pipe to the low temperature heating side condenser 4.

    [0054] In such a manner, the high-temperature water heated in the high temperature heating side refrigerant circuit A can be turned to the heat source for defrosting the low temperature heating side refrigerant circuit B, and the defrosting time can be shortened.

    Reference Signs List



    [0055] 1 high temperature heating side condenser 2 high temperature heating side evaporator 3 three-way valve 4 low temperature heating side condenser 5 pump 6 low temperature heating side evaporator 7 motor-operated valve 8 high temperature heating side compressor 9 low temperature heating side compressor 10 three-way valve 11 high temperature heating side expansion valve 12 low temperature heating side expansion valve 13 temperature sensor 14 pressure sensor 15 temperature sensor 16 water return port 17 water return port 18 control unit 20a pipe 20b pipe 20c pipe 20d pipe 20e pipe 21 pipe 22a pipe 22b pipe 22c pipe 23 pipe 30 low temperature side water supply port 31 high temperature side water supply port 32 low temperature side tank 33 high temperature side tank 100 heat pump system 101 refrigerant heat exchanger 102 expansion valve 103 evaporator 104 compressor 105 condenser 106 expansion valve 107 water circuit 108 compressor 200 heat pump system A high temperature heating side refrigerant circuit B low temperature heating side refrigerant circuit C low order side refrigerant circuit D high order side refrigerant circuit


    Claims

    1. A heat pump system comprising:

    a low temperature heating side refrigerant circuit (B) comprising a low temperature heating side compressor (9), a low temperature heating side condenser (4), a low temperature heating side expansion valve (12) and a low temperature heating side evaporator (6) successively connected by a refrigerant pipe;

    a high temperature heating side refrigerant circuit (A) comprising a high temperature heating side compressor (8), a high temperature heating side condenser (1), a high temperature heating side expansion valve (11) and a high temperature heating side evaporator (2) successively connected by a refrigerant pipe;

    a first pipe (20a, 20b, 20c, 20d, 20e) connecting a low temperature side liquid supply port (30) configured to supply liquid to the system, the low temperature heating side condenser (4), and the high temperature heating side evaporator (2) in this order, thereby to circulate the liquid;

    a second pipe (22a, 22b, 22c) connecting a high temperature side liquid supply port (31) configured to supply liquid to the system, and the high temperature heating side condenser (1) in this order, thereby to circulate the liquid;

    a pump (5) provided in the first pipe (20a, 20b, 20c, 20d, 20e) and configured to feed the liquid heated in the low temperature heating side condenser (4) to the high temperature heating side evaporator (2);

    a first three-way valve (3) provided in the first pipe (20a, 20b, 20c, 20d, 20e) between the low temperature heating side condenser (4) and the high temperature heating side evaporator (2) and configured to control a flow rate of the liquid circulated inside the first pipe (20a, 20b, 20c, 20d, 20e); and

    a control unit (18) configured to control at least one of the pump (5) and the first three-way valve (3), and control a flow rate of the liquid fed from the low temperature heating side condenser (4) to the high temperature heating side evaporator (2), characterized in that the heat pump system further comprises:

    a second three-way valve (10) provided in the second pipe between the high temperature side liquid supply port (31) and the high temperature heating side condenser (1); and

    a third pipe (23) configured to connect the first three-way valve (3) and the second three-way valve (10); wherein

    the control unit (18) is configured to control the second three-way valve (10) to allow liquid heated in the low temperature heating side condenser (4) to flow into the second three-way valve (10) and to mix with liquid flowing from the high temperature side water supply port (31) to the high temperature heating side condenser (1).


     
    2. The heat pump system of claim 1,
    wherein the control unit (18) is configured to control the pump (5) and the first three-way valve (3) based on a temperature of the liquid heated by the high temperature heating side condenser (1), and an evaporating temperature of refrigerant in the high temperature heating side evaporator (2) or an evaporating pressure of the refrigerant in the high temperature heating side evaporator (1).
     
    3. The heat pump system of claim 1 or 2,
    wherein the control unit (18) is configured to detect a target temperature of the liquid generated in the high temperature heating side refrigerant circuit (A), and control operation of the low temperature heating side refrigerant circuit (B) and the high temperature heating side refrigerant circuit (A), and the first three-way valve (3).
     
    4. The heat pump system of any one of claims 1 to 3,
    wherein the heat pump system is configured such that a temperature of the liquid circulated in the second pipe (22a, 22b, 22c) and heated in the high temperature heating side condenser (1) is made higher than a temperature of the liquid circulated in the first pipe (20a, 20b, 20c, 20d, 20e) and heated in the low temperature heating side condenser (4).
     
    5. The heat pump system of claim 1,
    wherein the system is operable to circulate liquid heated in the high temperature heating side refrigerant circuit (A) through the second pipe (22c, 22b), the third pipe (23) and the first pipe (20c, 20b) to the low temperature heating side condenser (4).
     


    Ansprüche

    1. Wärmepumpensystem, umfassend:

    einen Niedertemperatur-Heizseiten-Kühlmittelkreislauf (B), umfassend einen Niedertemperatur-Heizseiten-Kompressor (9), einen Niedertemperatur-Heizseiten-Kondensator (4), ein Niedertemperatur-Heizseiten-Entspannungsventil (12) und einen Niedertemperatur-Heizseiten-Verdampfer (6), die aufeinanderfolgend durch ein Kühlmittelrohr verbunden sind;

    einen Hochtemperatur-Heizseiten-Kühlmittelkreislauf (A), umfassend einen Hochtemperatur-Heizseiten-Kompressor (8), einen Hochtemperatur-Heizseiten-Kondensator (1), ein Hochtemperatur-Heizseiten-Entspannungsventil (11) und einen Hochtemperatur-Heizseiten-Verdampfer (2), die aufeinanderfolgend durch ein Kühlmittelrohr verbunden sind;

    ein erstes Rohr (20a, 20b, 20c, 20d, 20e), das einen niedertemperaturseitigen Flüssigkeitszufuhranschluss (30), der ausgelegt ist, um das System mit Flüssigkeit zu versorgen, den Niedertemperatur-Heizseiten-Kondensator (4) und den Hochtemperatur-Heizseiten-Verdampfer (2) in dieser Reihenfolge verbindet, wodurch die Flüssigkeit zirkuliert wird;

    ein zweites Rohr (22a, 22b, 22c), das einen hochtemperaturseitigen Flüssigkeitszufuhranschluss (31), der ausgelegt ist, um das System mit Flüssigkeit zu versorgen, und den Hochtemperatur-Heizseiten-Kondensator (1) in dieser Reihenfolge verbindet, wodurch die Flüssigkeit zirkuliert wird;

    eine Pumpe (5), die in dem ersten Rohr (20a, 20b, 20c, 20d, 20e) angeordnet und ausgelegt ist, um die Flüssigkeit, die in dem Niedertemperatur-Heizseiten-Kondensator (4) erwärmt wird, dem Hochtemperatur-Heizseiten-Verdampfer (2) zuzuführen;

    ein erstes Dreiwege-Ventil (3), das in dem ersten Rohr (20a, 20b, 20c, 20d, 20e) zwischen dem Niedertemperatur-Heizseiten-Kondensator (4) und dem Hochtemperatur-Heizseiten-Verdampfer (2) bereitgestellt und ausgelegt ist, um eine Strömungsrate der innerhalb des ersten Rohrs (20a, 20b, 20c, 20d, 20e) zirkulierten Flüssigkeit zu steuern; und

    eine Steuereinheit (18), die ausgelegt ist, um zumindest eine aus der Pumpe (5) und dem ersten Dreiwege-Ventil (3) zu steuern und um eine Strömungsrate der Flüssigkeit, die von dem Niedertemperatur-Heizseiten-Kondensator (4) an den Hochtemperatur-Heizseiten-Verdampfer (2) zugeführt wird, zu steuern, dadurch gekennzeichnet, dass das Wärmepumpensystem ferner Folgendes umfasst:

    ein zweites Dreiwege-Ventil (10), das in dem zweiten Rohr zwischen dem hochtemperaturseitigen Flüssigkeitszufuhranschluss (31) und dem Hochtemperatur-Heizseiten-Kondensator (1) bereitgestellt ist; und

    ein drittes Rohr (23), das ausgelegt ist, um das erste Dreiwege-Ventil (3) und das zweite Dreiwege-Ventil (10) zu verbinden; wobei

    die Steuereinheit (18) ausgelegt ist, um das zweite Dreiwege-Ventil (10) zu steuern, um zu ermöglichen, dass Flüssigkeit, die in dem Niedertemperatur-Heizseiten-Kondensator (4) erwärmt wurde, in das zweite Dreiwege-Ventil (10) strömt und sich mit Flüssigkeit vermischt, die aus dem hochtemperaturseitigen Wasserzufuhranschluss (31) zu dem Hochtemperatur-Heizseiten-Kondensator (1) strömt.


     
    2. Wärmepumpensystem nach Anspruch 1,
    wobei die Steuereinheit (18) ausgelegt ist, um die Pumpe (5) und das erste Dreiwege-Ventil (3) basierend auf einer Temperatur der Flüssigkeit, die durch den Hochtemperatur-Heizseiten-Kondensator (1) erwärmt wurde, und eine Verdampfungstemperatur von Kühlmittel in dem Hochtemperatur-Heizseiten-Verdampfer (2) oder einen Verdampfungsdruck des Kühlmittels in dem Hochtemperatur-Heizseiten-Verdampfer (1) zu steuern.
     
    3. Wärmepumpensystem nach Anspruch 1 oder 2,
    wobei die Steuereinheit (18) ausgelegt ist, um eine Zieltemperatur der Flüssigkeit, die in dem Hochtemperatur-Heizseiten-Kühlmittelkreislauf (A) erzeugt wurde, zu detektieren, und um den Betrieb des Niedertemperatur-Heizseiten-Kühlmittelkreislaufs (B) und des Hochtemperatur-Heizseiten-Kühlmittelkreislaufs (A) und des ersten Dreiwege-Ventils (3) zu steuern.
     
    4. Wärmepumpensystem nach einem der Ansprüche 1 bis 3,
    wobei das Wärmepumpensystem so ausgelegt ist, dass eine Temperatur der Flüssigkeit, die in dem zweiten Rohr (22a, 22b, 22c) zirkuliert wird und in dem Hochtemperatur-Heizseiten-Kondensator (1) erwärmt wird höher gemacht wird als eine Temperatur der Flüssigkeit, die in dem ersten Rohr (20a, 20b, 20c, 20d, 20e) zirkuliert wird und in dem Niedertemperatur-Heizseiten-Kondensator (4) erwärmt wird.
     
    5. Wärmepumpensystem nach Anspruch 1,
    wobei das System betreibbar ist, um Flüssigkeit, die in dem Hochtemperatur-Heizseiten-Kühlmittelkreislauf (A) erwärmt wird, durch das zweite Rohr (22c, 22b), das dritte Rohr (23) und das erste Rohr (20c, 20b) bis zu dem Niedertemperatur-Heizseiten-Kondensator (4) zu zirkulieren.
     


    Revendications

    1. Système de pompe à chaleur, comprenant :

    un circuit de réfrigérant côté chauffage à basse température (B) comprenant un compresseur côté chauffage à basse température (9), un condensateur côté chauffage à basse température (4), un détendeur côté chauffage à basse température (12) et un évaporateur côté chauffage à basse température (6) raccordés successivement par un tuyau de réfrigérant ;

    un circuit de réfrigérant côté chauffage à haute température (A) comprenant un compresseur côté chauffage à haute température (8), un condensateur côté chauffage à haute température (1), un détendeur côté chauffage à haute température (11) et un évaporateur côté chauffage à haute température (2) raccordés successivement par un tuyau de réfrigérant ;

    un premier tuyau (20a, 20b, 20c, 20d, 20e) raccordant un orifice d'alimentation en liquide côté basse température (30) configuré pour alimenter le système en liquide, le condensateur côté chauffage à basse température (4) et l'évaporateur côté chauffage à haute température (2) dans cet ordre, pour ainsi faire circuler le liquide ;

    un deuxième tuyau (22a, 22b, 22c) raccordant un orifice d'alimentation en liquide côté haute température (31) configuré pour alimenter le système en liquide, et le condensateur côté chauffage à haute température (1) dans cet ordre, pour ainsi faire circuler le liquide ;

    une pompe (5) prévue dans le premier tuyau (20a, 20b, 20c, 20d, 20e) et configurée pour alimenter le liquide chauffé dans le condensateur côté chauffage à basse température (4) vers l'évaporateur côté chauffage à haute température (2) ;

    une première vanne à trois voies (3) prévue dans le premier tuyau (20a, 20b, 20c, 20d, 20e) entre le condensateur côté chauffage à basse température (4) et l'évaporateur latéral de chauffage à haute température (2) et configurée pour réguler un débit d'écoulement du liquide mis en circulation à l'intérieur du premier tuyau (20a, 20b, 20c, 20d, 20e) ; et

    une unité de commande (18) configurée pour commander au moins l'une de la pompe (5) et de la première vanne à trois voies (3), et pour réguler un débit d'écoulement du liquide alimenté depuis le condensateur côté chauffage à basse température (4) vers l'évaporateur côté chauffage à haute température (2), caractérisé en ce que le système de pompe à chaleur comprend en outre :

    une seconde vanne à trois voies (10) prévue dans le deuxième tuyau entre l'orifice d'alimentation en liquide côté haute température (31) et le condensateur côté chauffage à haute température (1) ; et

    un troisième tuyau (23) configuré pour raccorder la première vanne à trois voies (3) et la seconde vanne à trois voies (10) ; dans lequel

    l'unité de commande (18) est configurée pour commander la seconde vanne à trois voies (10) afin de permettre à du liquide chauffé dans le condensateur côté chauffage à basse température (4) de s'écouler dans la seconde vanne à trois voies (10) et de se mélanger avec le liquide s'écoulant depuis l'orifice d'alimentation en eau côté haute température (31) vers le condensateur côté chauffage à haute température (1).


     
    2. Système de pompe à chaleur selon la revendication 1,
    dans lequel l'unité de commande (18) est configurée pour commander la pompe (5) et la première vanne à trois voies (3) sur la base d'une température du liquide chauffé par le condensateur côté chauffage à haute température (1), et d'une température d'évaporation du réfrigérant dans l'évaporateur côté chauffage à haute température (2) ou d'une pression d'évaporation du réfrigérant dans l'évaporateur côté chauffage à haute température (1).
     
    3. Système de pompe à chaleur selon la revendication 1 ou 2,
    dans lequel l'unité de commande (18) est configurée pour détecter une température cible du liquide généré dans le circuit de réfrigérant côté chauffage à haute température (A), et pour commander le fonctionnement du circuit de réfrigérant côté chauffage à basse température (B) et du circuit de réfrigérant côté chauffage à haute température (A), et de la première vanne à trois voies (3).
     
    4. Système de pompe à chaleur selon l'une quelconque des revendications 1 à 3,
    dans lequel le système de pompe à chaleur est configuré de telle sorte qu'une température du liquide mis en circulation dans le deuxième tuyau (22a, 22b, 22c) et chauffé dans le condensateur côté chauffage à haute température (1) soit rendue supérieure à une température du liquide mis en circulation dans le premier tuyau (20a, 20b, 20c, 20d, 20e) et chauffé dans le condensateur côté chauffage à basse température (4).
     
    5. Système de pompe à chaleur selon la revendication 1,
    dans lequel le système peut fonctionner pour faire circuler un liquide chauffé dans le circuit de réfrigérant côté chauffage à haute température (A) à travers le deuxième tuyau (22c, 22b), le troisième tuyau (23) et le premier tuyau (20c, 20b) vers le condensateur côté chauffage à basse température (4).
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description